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The potential 1/r* is the only known potential more singular than the centrifugal term, for which
the Schriodinger equation can be solved exactly. In the present investigation, we consider the potential
in more detail than has been done so far. In particular the physical S-matrix is obtained, shown to
be unitary, and compared with expressions of other derivations given in the literature. The eigenvalues
of the Mathieu equation are finally discussed, and the behavior of the Regge trajectories is indicated.

INTRODUCTION

N recent years a large number of papers has been
published dealing with highly singular potentials

in both relativistic and nonrelativistic theories. The
interest in these potentials derives from many in-
dications that the interactions responsible for high-
energy elementary-particle reactions are of a more
singular nature than the Yukowa potential. For
example, as Sawyer' and Giffen and Predazzi® have
pointed out, the weak four-fermion interaction could
very well be equivalent to a potential as singular as
1/7°. Now a large number of methods developed
specifically for the calculation of the scattering
amplitude or approximations to it (e.g., the Man-
delstam representation, Fredholm determinantel
method, Born approximation, ete.) fail almost com-
pletely in the case of interactions as singular as
the centrifugal term in the nonrelativistic Schro-
dinger equation. It is precisely this breakdown which
led to the development of the peratization procedure,
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! R. F. Sawyer, Phys. Rev. 134, B448 (1964).
( 2 I\;I Giffon and E. Predazzi, Nuovo Cimento 33, 1374
1964 ).
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which has been discussed in several papers in con-
nection with highly singular potentials.® It is there-
fore of considerable interest in connection with un-
renormalizable field theories to find the exact type
of singularity of the interaction responsible for high-
energy elementary-particle reactions. In view of
the difficulties encountered in quantum field theory,
potential theory has always been regarded as a
solvable mathematical model or prototype illustrat-
ing the general physical behavior. It is clear that
exactly solvable potentials are of particular interest,
since their physics can be studied more easily.
Moreover, it is often possible to use these as a sort
of unperturbed potentials which will only have to
be modified slightly to represent a more realistic
interaction and yet be solvable by standard per-
turbation methods (e.g. comparison of the Coulomb
potential 1/r with the Yukawa potential ¢™/r
shows that the factor ¢™ may be regarded as a

3N. N. Khuri and A. Pais, Rev. Mod. Phys. 36, 590
(1964); G. Tiktopoulos and 8. B. Treiman, Phys. Rev. 134,
B844 (1964); H. H. Aly, Riazuddin, and A. H. Zimerman,
Phys. Rev. 136, B1174 (1964); Nuovo Cimento 35, 324 (1965);
J. Math. Phys. 6, 1115 (1965); T. T. Wu, Phys. Rev. 136,
B1176 (1964).
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perturbation on the Coulomb potential).* However,
this is beyond the scope of the present investiga-
tion.

It is obvious, therefore, that a highly singular
potential for which the Schrédinger equation can
be solved exactly is of considerable interest. Such
a potential is 7~*. It was first discussed by Wannier
and Vogt® for the motion of gaseous ions and elec-
trons through a gas of medium-sized molecules.
More recently Challifour and Eden® discussed the
work of the former authors with regard to the
behavior of the scattering amplitude for highly
singular potentials. Such a study is indeed of great
interest, since in these cases the Mandelstam rep-
resentation would require an infinite number of
subtractions, and this cannot be used. This has
already been pointed out by Challifour and Eden,
without however, indicating the specific behavior
of the Regge trajectories. Neither is this attempted
in the paper of Spector’, which contains a formal
expression of the S-matrix for a repulsive potential
in terms of Mathieu functions defined by Meixner
and Schofke® (hereafter referred to as MS), whereas
the work of Wannier and Vogt contains the deriva-
tion for the attractive potential in terms of func-
tions defined earlier by Wannier.”

In the present investigation we discuss the prob-
lem of the potential »™* in more detail. In particular,
we show the connection between the work of Wan-
nier and Vogt and that of Spector, we establish
the unitarity of the S-matrix, for pure elastic scat-
tering, and obtain the eigenvalues and thus the
Regge trajectories, using more recent results on
the asymptotic behavior of Mathieu functions and
their characteristic numbers®.

2. EXACT SOLUTION OF THE SCHRODINGER
EQUATION AND CALCULATION OF THE
S-MATRIX

For the singular potential

Vi) = —V/@n) @.)

[V(r) repulsive for V < 0, attractive for V > 0],
we have the radial Schradinger equation

o’ + [lc’ - Klr‘i'—i‘l + (;;4]@(:»-) =0; (2.2

+H. J. W. Miiller (to be published).

5 G. H. Wannier and E. Vogt, Phys. Rev. 95, 1190 (1954).

¢ J. Challifour and R. J. Eden, J. Math, Phys. 4, 359 (1963).

7 R. M. Bpeetor, J. Math. Phys. 5, 1185 (1964).

8 J. Meixner and F. W, Schitfke, Mathieusche Funkiionen
und Spdroidfunktionen (Springer-Verlag, Berlin, 1953).

! G. H. Wannier, Quart. Appl, Math. 11, 33 (1953).

1 R. B. Dingle and H. J. W. Miiller, J. Reine Angew.
Math. 211, 11 (1962).

V has dimension of energy, u dimension of reciprocal
length. Setting

o) =), A=(0+1,  @23)
and z = r/ya = ¢°, we obtain the equation
4'’(2) — [ — 2h? cosh 22]4(z) = O, 2.4

where the range 0 < r < o corresponds to — o <
z < < =, and where

=R, 0= Vi (2.5)

Equation (2.4) is seen to be a modified Mathieu
equation.

A, The Attractive Potential

We now discuss briefly the case of an attractive
potential. In this case we have V > 0; the behavior
of solutions near r = 0 is obtained from the be-
havior of the modified Mathieu functions ¥(z)
for 2 — — o, whereas for r — -+ =, we have to
use corresponding solutions of (2.4) having the
correct behavior for z — 4 .

Now Wannier and Vogt have discussed at length
the behavior of the modified Mathieu functions
for z — — . Applying the WKB-method to (2.2)
near v = ( yields immediately the behavior

Vord
r— 0 qa(T)NreXp[:!: Z—ng;—i-]
. * 1
= 7 exXp [:F %;j} 2.6)
‘We now define
r— 0: o(r) ~ r exp [ikrd/r] @7

as an ingoing wave representing the solution which
is regular at the origin. Equation (2.7) together
with the usual asymptotic behavior at large dis-
tances

s iky

2.8)

completely determines the wave function. We now
note the following solutions of (2.4) defined by
Wannier from their asymptotic behavior for z —
B

r— @ty ~e

1 . i
he'V(e) ~ @h ooz &P [-—Zzh coshz — Z]
~ i exp [-ikr . ’—"]
(er) 4 @.9)
@0 1 [ : ir
he®(2) ©h cosh 2 exp | +2th coshz - "

1 . X
~ Tt &P [-Hkr + f—;—r:' ’
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forz > 0and z — «;and

t8) 1 ’ . i

(krr )* exp [ ihr, iw:l
~ {53 _———F L — s
. ro 4 (2.10)

he'(2) ~ o cclwsh o %P [%h cosh z + 'f

r \! [ ihr, iw:l
N(krf) exp | + r +4 !

for 2 < 0 and 2z > — . Hence, all we need to
obtain the phase shift is a relationship linking
ke’ and he'” with he”. This may immediately
be inferred from the formulas given by Wannier.
However, in order to show the connection with the
work of Spector, it is necessary to quote some
more details of Wannier’s analysis. The function
he”’ (z) defined above for z < 0 may be re-expressed
as a linear combination of two other linearly in-
dependent solutions j%(z), which are identical to
Me'? in the notation of MS. Then we have

{ 1ix{y%P) » —}!l’(‘y:l:ﬂ) +(z)}/sm 1!',8

@2.11)

Here 8 is the Floquet parameter (usually denoted
by ») and v is another parameter introduced by
Wannier to play an analogous role in regions of in-
stability of Mathieu functions as 8 in regions of
stability. These parameters are, of course, functions
of A and & in Eq. (2.4). The functions je*(z) may
now be continued across z = 0 (i.e., r = r,) with
the help of the relations

]e (Z) - _ **‘TT[B:F*”B}I@(”(Z) _ e:k}urﬁhe(z)(z)] (2 12)
Substitution of (2.12) in (2.11) yields immediately

je (@ —

R e )
sin 78
+ 2712—:% he®(2).  (2.13)
Hence, the S-matrix is given by
= —iginwy/sin #(y + B). (2.14)
v and g are related by
¢ = isin ry/sinnB 2.15)

{cf. Wannier), where 8 5% integer.
In the derivation of Spector, the following Mathieu
functions defined by MS are used:

M;"G, b)

S (=1 CL(E)Z, (2 cosh 2),
@.16)

where Z{” for j = 1, 2, 3, 4 represent the Bessel
functions J,, J_,, and the Hankel functions H",
H®, respectively. We shall now assume » to be
nonintegral, since integral values of » require special
considerations and will be discussed separately. The
expansions (2.16 are valid for |cosh z| > 1) MS
have shown that for R(z) — + o:

-1
- om0, K

M9 1y — D @h cosh 2),

1
- (wh cosh z)i

;eXp[ii(% cosh z -"—2’5 —’Zf)] ,
- (&) e[ 2l -7 -],

2
~he),  R@ - e @17)
This behavior establishes the connection between
the functions M and he. In fact, a detailed com-
parison of Wannier’s solutions with those of MS

shows that the following connection formulas hold:

M(s)(z) —_ = (1) (02

§s‘r(7—v)he(2)(z)’

me,0) @.18)
Mﬁ”(z) - : ﬁe ((()(;) i;r('rd-v)he(l)(z)
for R(2) > 0, and
Msa)(_z) - .]:_M_ini(_))e;e:wﬂ);wu)(z)’
k4 me,(O) (2‘19)
M£4)(_z) — : o ((()(;2 ill’('{“")}w(a)

for B(2) < 0. These formulas are useful in correlat-
ing Wannier's important results to the accepted
standard notation introduced by MS.

Spector’s method of matching the solutions is
now seen to be similar to that of Wannier. In the
case of M we have instead of (2.11) and (2.12),

M®@) = aMe,(z) + fMe_,(2),

aMe_,(—Z) + BMe,(—2),
= A'M®(—z) + BMP (—2).

I

(2.20)
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The coefficients are then given by the expressions

WIM®, MeW[Me,, M*] —

WIM®, Me_,JW[Me_,, M"]

AI

B = WIM®, Me,\W[Me,, M{¥] —

WMe.,, Me,\W[IM>, M\*] !

@2.21)
WIM®, Me_,]W[Me._,, M(s’]

where the W’s denote Wronskians of the solutions
(cf. MS p. 171). Evaluation of these expressions
yields the ratio

A’ R —1 M2N0)

'E,‘ = Rz_—e_z‘.-:, where R = M:”(O). (2.22)
The S-matrix is then given by
S = —i(4’/B"e """, (2.23)

Alternatively we may use the matching relationship
(MS p. 171)

WML, MPIME (—2)
= M OMP'©0) + MP QM 01U @)

2M ;7 (O)M;” O)M (2), (2.24)
which leads to the expression

A _1[MP0) M:“'<0)]

BI - _2 [Mﬁa)(o) + Mia)l(o) * (2‘25)

Using formulas re-expressing M(¥, M in terms
of M‘!) (MS p. 169), we readily obtain

M(4)(0) R _ eivr
1(3)(0) R N e_,-,,,,.' (2'26)
Also, by the formula (MS p. 181)
M(l)(o)
(1) I3
M) = me,(0) Me,,(2), (2.27)
and the fact that
Mel,(0) _ Cei(0) + Sey(0) _ -1
Me-,(0)  Ce(0) — Sel(0) ’
it follows that
M:U' O R ivr
M:a)/gog : ¢ . (2.28)

Substituting (2.26) and (2.28) into (2.25), we again
obtain the expression (2.22) for the ratio A’/B’.

B. The Repulsive Potential

In the case of a repulsive potential we have
V <0, ie.,
L _ilvp

= g2 = TY_ ;7.
> = Tl = 9r,, sothat z = 1In <Ta> o)

W(Me.-,, Me,)W[M", M]

At the point r = r,, z changes from +i}r to —i}n.
The matching relationship corresponding to Eq.
(2.24) now reads

W[MSi)’ M:k)]Mii)(—Z)

_ M _ T wf T
- { (=g (:3)
+ M:i),< )M(k)<2 4)}M(:)(z)
_ {M(i)(—’l: E)]L[(i)’<i 7[)
’ 477 4
(€37 RN {7 k)
+ M, (14>M, ( 1,4>}M, (2).

Evaluating the ratio of the coefficients as before
for § = 3, k = 4, we again obtain (2.22) (in terms
of r,), as one would expect. (Thus there appear
to be some minus-sign errors in the final expression
for the S-matrix given by Spector—in agreement
with results obtained by Bertocchi et al.'")

(2.29)

C. S-Matrix for Integral Values of v

The above results are valid only for nonintegral
values of ». We shall see, however, that periodic
Mathieu functions, i.e., those for integral values
of v, are of primary interest. We therefore extend
our results to cover all possible values of ». This
necessitates a separate calculation of the S-matrix
for integral values of the Floquet parameter.

Now the expansions (2.16) for the solutions of
the modified Mathieu equation can be shown to
be convergent for |cosh z| > 1, but uniformly con-
vergent only when |cosh z|] > 1 for z complex.
Another set of linearly independent solutions is
given by the pairs

Ce(z), Fe(z);
Se(z), Ge(z).

These solutions (i.e. their Fournier expansions) con-
verge uniformly for all finite values of 2. They can
therefore be used to join the two regions 0 < |z| < 1,
1 < Jz] £ = (x = €. In order to connect these

11 T,, Bertocchi, S. Fubini, and G. Furlan, Nuovo Cimento
35, 599 (1965).

(2.30)
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two regions for integral values of », we use the
solutions (2.30). Introducing the notation adopted
by MS (p. 200), we now write

Mz h) = Mc(z;h) for m =0,1,2, ---
and
(—1)"M%(; b)
= Ms(z;h) for m=1,2,3-... (2.31)

In regions of common validity of the two types of
solutions, we have then (cf. MS Sec. 2.7)

Mc(a.n(z’ B = a‘“"-‘”Ce(z; hz) + ﬁFFe(z; hz);

(2.32)
and
Ms®® @, h) = o ®* Se(z; h*) = B°Ge(z; 1),
where
c3,4) _ Mc,(,,a'4)(0; h) 2(3,4) _ M-Sr(nz'u,(O; R) .
™ Ce,0; 0% * % T TRL(0;RY
Fo_ ‘MC:,,Z)’(O; h) ¢ __ .MC:,,Z)(O;h) .
B =t @) B =g, O3 )
(2.33)

(m = 2n,2n 4+ 1, 2n + 2 as required).

Here and in the following Me¢, Ms are understood
to mean

MCm,, M02n+1, M827,+1, MSz,H.z fOI‘ n = 0, 1, 2, vt

It is clear that the calculation proceeds along the
same lines as before, except that M ®’ is now Mc®,
Ms®, and instead of Me,, Me_,, we have Ce, Se;
Fe, Ge. Furthermore, it is necessary to remember
that Ce(z), Ge(z) are even, whereas Se(z) and Fe(z)
are odd functions of z. The ratio A’/B’ is then

found to be given by

Ac’ ac(S) _ ac(4) M(2)(O, h)
—_— = —_— 3 < 2
B 2@ Y M ©0; by
forO0<vy=mm=2n2n+1;2=0,1,2,---,
d
an 2.34)
As’ a®® — as(-i) . MS(Z)’(O; h)
B” T T 2™ T "MsP0; R
for0>v=-mm=2n+1,2n+2;n=0,1, 2,
-, since
M(3.4) — ]l/I(l) + ‘I:M(2).

The reader can easily verify these expressions by
deriving them independently from the matching
relationship (2.24), which is also valid for integral
values of » and j = 3, k¥ = 4. The ratio A*'/B*

leads to an S-matrix corresponding to negative
integral values of the quantum number » and is
thus unphysical, since v is a function of both angular
momentum and energy. The expression 4°'/B°" can
be evaluated with the help of series, expansions
for Mc®, Mc® given by MS. However, for energies
not in the immediate neighborhood of the thresh-
old, it is more expedient to use the following very
simple expression for the S-matrix obtainable in
terms of high-energy asymptotic expansions'®.

1+ 3 (27%»,-12,-(7»)]

i=1

1+ 3 (—237),-1%’:@)]

i=1

S = i exp [—2(2g]-

’

where the R;’s are known functions of n, and ¢* =
ik |v}* u® (repulsive potential).

3. DISCUSSION OF THE PARAMETERS OF THE
MATHIEU EQUATION

Comparison of Egs. (2.14) and (2.22) readily
shows that
_— M (—11(0) ivy
=wio =
This result is also in agreement with the linkage

formulas (2.18) and (2.19). It follows from (3.1)
that the substitution » — —v is equivalent to re-

placing ¥y by —7v, ie., ¢(8, v) = ¢(—8, —v). Thus
v is in effect 2 normalization constant.

The significance of ¢ can be seen as follows.
Replacing x by 3r + <y in the Mathieu equation

v’ + (N — 2h* cos 22}y = 0,
we obtain
ay/dy") — (\ + 2h% cosh 2y)y = 0.
For large values of |y| this equation may be ap-
proximated by
@¥/dy") — N+ K"y >~0; |y >0. (3.2)

Solutions of this equation are the modified Bessel
functions

Kyi(he'""), Lu(ahe'™').

Following Wannier,” we call key that solution which
for ¥ >> 0 has the following asymptotic behavior:

exp [—he']
(72 .
Further, for positive real A and %°, the second de-

rivative of ¥ divided by y is always positive, so that
key (which vanishes for y — -+ «) will curve up-

12 H, H. Aly and H. J. W. Miiller (to be published).

R 3.1)

key ~ y> 0. (3.3)
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wards and never vanish for large negative y, Le,
key must have the behavior

- [ exp (—he'™)

4+ exp (e 4 ¢)]. (3.4

This follows immediately from the fact that a gen-
eral solution Qf (3.2) may be written

¢~ [Ae™ & Be ™/ MY, (3.5)

¢ in Eq. {(34) is the parameter appearing in the
linkage formulas above via the expression (2.15).
We now wish to establish the relationship between ¢
¢ and the Floguet parameter v (or 8). In fact

= tjrg = ir( + ),

where ¢ is approximately an odd integer.

In order to prove (3.6), we use some solutions
of the Mathieu equation given by Dingle and
Miiller*”. We choose the general solution of the

Mathieu equation written in the form
Ne(z) = N*(g, H[A(z)e* "™ = Alx)e ™), (3.7)
where

Alg, b;2) = Alg, b; ~2) = A(—g, —h;2),

N* being a normalization constant and 4(z) an
expansion in powers of 1/h. Setting z = 3r + 4y,
the functions 4(x) and A{x) are easily seen to have
the following property for |y} 3> 0:

o (=D¥2D(g, k
A ~ CUEHED,

o o (D2 D(—q, —R)
Aly) o~ (—7sioh y)*
Now using the results of Dingle and Miiller'®, it
can be shown that the constants D(g, k), D(—gq, —h)
are identical. Ne(y) is then seen to have the fol-
lowing asymptotic behavior for ¥ < 0:

N*(q, H2'D(g, )
Ne) = 1y~ sinh o)*

—hal¥l
% { :i:efxp( he'*") }
+g§w« exp (}whﬁ)

Comparing this equation with (3.4) above, we obtain
the desired result (3.6}, which is also in agreement
with the results of Challifour and Eden®.

4. PROPERTIES OF THE S-MATRIX

The expressions obtained in See. 2 for the elastic
S-matrix are, of course, expected to be unitary.
We indicate the proof for two cases.

kﬁy (ke!vl)

3.6)

(3.8)

(3.9)

For nonintegral values of the Floguet parameter
v, we have

R -1 wipw

Rx — -—mnr ¥

@.1)

where B = M%) (0; h)/M2){0; k). Unitarity implies
S*8 = 1; 4.2)

here the asterisk on § indieates complex conjuga~
tion of the functional form of the S-matrix together
with the replacement k¥ — —Fk, the latter being
equivalent to the interchange h — —1h [cf. Eq. (2.5)].
Equation (4.2) is readily seen to be satisfied provided

R = R* ",
R(®) = R(—h)e™".

ie., 4.3)

In order to prove Eq. (4.3), we require several
properties of Mathieu functions, which are given
by MBS in the following form (MS pp. 170, 181,
131):

M@ ) = MP(z + Yix; —ih), (4.4a)

MGz; b)Y/ Me.,(2; 1)y = M'O(0; h)/me,0; 17,

{4.4b)
Me,(z + iwp) = """ Me,(2), (4.4¢)
Me_.(z) = Me(—2). 4.4d)

For a value of 2z =
write [ef. (4.4b)]
Me,(z20; 1) M\ (eo; b)
Me_,(zy; hz) Mm(zn; h) !

— 8*;:;: Mer{zﬁ + 7'7"33: }"‘2) M(D(ZB: h}
- Me_z; 1K'y MP{(z; )

by (4.4¢). Setting now p = 1 and 2, =

{4.5) becomes fusing {4.4a, d)}

R = e—sxv[M(H zh)/M{!}CO "‘"‘lh)] _ e-n—rR*
4.6}

Thus Eq. (4.3) is satisfied, and hence S is unitary.
For integral values of the Floquet parameter,
we have expressions (2.34), i.e.,

Me,2(0; h)
M0 ™

~ime Mo (0;
=g *ﬂz‘:—fp%%,m=2n+l,2n+2‘

We prove the unitarity of the first of these expres-
gions for m = 2n. This may be easily surmised
with the help of the relations {(ef. MS p. 200)

z; still to be chosen, we may

R

i

{4.5)

—}im,

S =g =22 +1

@)
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M(s.s)
—_ M(x) o iM(z)’
M2 (z + pri; b)
= (=1)""M2(2; b) + 2ip(—1)"M.(z; B),
Mei(z; +1h)

48)

= Mc‘”(z + 1 5 ; h) @s)
Ms;.5(z; =ih)

- Ms,‘,f.l,,(z il ;h)-

Thus,
(S)
~(0; )
8 = 30 s BT
_ 1Ml (= %m h) + iMe;,) (—}iw; B)
i My (Bri; B)
_ 1M 0; —ek) + iMe;,) (0; —ih)
- i (2)(0 — ‘Lh) b

= (877,

which had to be shown. An analogous procedure
for S,,., confirms that this expression is also unitary.

The poles of the S-matrix (2.14) are readily
found to be given by

=(n+%)7r’i, n=0,=xl,£2 -

Comparison with (3.6) shows that this implies
integral values of » or ¢. The S-matrix given by
Egs. (2.22) and (2.23) is expected to have poles
at just the same points. Thus, (4.10) appears to be
incompatible with the assumption » # integer used
in the derivation of these expressions. However,
it may be conjectured that the S-matrix derived
for integral values of » is the analytic continuation
of the expression for nonintegral values of ».

(4.10)

5, REGGE TRAJECTORIES

The Regge trajectories are given by the poles
of the S-matrix (in the plane of complex angular
momentum) or, equivalently, by the secular equa~-
tion of the eigenvalue problem. Frequently it is
much easier to solve the secular equation for the
eigenvalues, than to extract the roots of the S-
matrix. The eigenvalues of Mathieu’s equation are
well-known and have been studied in great detail.
They are determined by the condition that the
solutions be periodic functions of periods =, 2.
Only then will their eigenvalues be also eigenvalues

of the radial Schridinger equation for the poten-
tial 1/7%, if these periodicity conditions are also
satisfied in this problem. This implies that ¢(2)
vanishes at the points where ¢(iz) is zero, i.e., at
iz = p(h, ¢), or where

r= r.e—:'r(h.u)’ r, = (Vi/pzk)i’

p being a real function of % for real k. This result
shows that the eigenvalues of Mathieu’s equation
are eigenvalues of the present problem provided
the cutoff » is introduced together with the hard-
core boundary conditions. However, at extremely
high energies or for weak coupling, this cutoff r is
seen to approach zero, so that in this limit the
eigenvalues of the Mathieu equation also represent
eigenvalues of the present problem with the bound-
ary conditions discussed above. The threshold be-
havior of the trajectories may easily be inferred
from the Mathieu equation, which for

B —0,
is approximately given by
V' + A ~0
so that, as is well-known for A* — 0,

i.e., energy k* — 0,

A~nd,  m=0, %1, 2, ...,

More exactly we have
A =n’ 4 OGY. (5.1)

The eigenvalues corresponding to the expression
of the S-matrix given in (2.34) are in the notation
of MS given by

Azn = Qony Aens1 = Oousr;

.2)

A—zn-p) = bznsy, A-2n-2y = Donsae

For large values of m and small values of |h*| the
eigenvalues a., are given by (cf. MS, p. 120)

a.(hY) = m?

1 (Bm’ +17) .
+ 2(m* — 1) h* + 32m’ — 1'(m® — 4 k

9m* + 58m® 4+ 29 .
T — D — =g T (5.3)

In the appendix we give a very brief derivation of
(5.3) by a simple method recently developed for
the derivation of asymptotic expansions of trans-
cendental functions'. The expressions (5.3) has been
studied at great length in the literature®, and for
each m many terms are known.

The high-energy asymptotic expansion of A is
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Fia. 1. Schematic trafiectory of the mth Regge pole in the
complex A-plane for attractive potential.

also well known (MS p. 139; Dingle and Miiller'):
) = — 2+ Bha— 5 (@ + ) - o + 3
— 53 (5d° + 346" + 9)
- 2—3h§ ¢(33¢* + 410¢> + 405)

- -2—%,7; 63¢° + 1260¢" + 2943¢" -+ 486)

+ -, (54)

whereq = 2n +1,n=20,1,2, -+ .

We can now trace the trajectories of the Regge
poles. Trajectories for large values of m are the
only ones which account for physical bound states,
including the ground state which for this singular
potential would occur at £ = — . Their behavior
in the vicinity of the threshold is given by the low-
energy expansion, i.e., Eq. (5.3), whereas the inter-
mediate and high-energy behavior is given by
(5.4). The schematic diagram for the mth trajectory
for the attractive potential is shown in Fig. 1. For
simplicity the trajectory is given in the A-plane.
In order to stay on the physical sheet in the k*plane,
we consider only regions, for which the imaginary
part of E} is positive [Im(E) > 0], i.e., the physical
sheet in the E-plane is mapped into the upper half
of the k-plane, and this again is mapped into the
first quadrant of the k*-plane, and so on.

From the graph it is seen that the trajectories
start at RQA\) = — o for E = + <. As the energy
decreases the trajectories move along the real axis
and into the region of positive R(\). The mth

H.J. W. MULLER

trajectory is seen to move past the point A = m®

for some distance and reverse its direction as the
energy is further reduced. Then the threshold is
reached and the trajectory continues to move along
the real axis. At a critical point somewhere near
the origin the trajectory curves out into the upper
half of the complex plane. For E approaching — «
it then travels into the lower half of the A-plane.
For very large values of m, expansion (5.4) loses
its validity. However, as the energy becomes ex-
tremely large but negative the trajectory is expected
to approach the ground state of the system at
A = 1 It is not possible to trace the trajectories
reliably in the region where they pass into the
complex plane, as this is the region where both the
low-energy and the high-energy expansion lose their
validity. In part this follows also from a study of
the radius of convergence of the low-energy ex-
pansion (cf. MS p. 121). The bound states of the
mth trajectory are seen to lie at the points B(\) =
1 2 25 ... within the interval 1 < R(\) < m’.

6. CONCLUSION

For the singular potential considered in this paper
the solution of the nonrelativistic Schrédinger equa-
tion does not have a simple power behavior at small
distances. Moreover, near the origin the Hamilton
operator is dominated by the potential term. These
two characteristics are shared by the solution of
the relativistic Bethe-Salpeter equation for poten-
tials more singular than the inverse fourth power
potential®. Recent investigations' indicate that an
exchange of the vector meson or bubbles in the ¢*
field theory seem to correspond to a potential in
the nonrelativistic scattering at least as singular
as the centrifugal term 1/r°, whereas an exchange
of spin-2 particles corresponds in essence to a more
singular potential, for which the potential 1/r* may
serve as an example.

In Sec. 5 we discussed the behavior of the
Regge trajectories and the occurrence of bound
states for the present singular (but relatively long
range) potential. This problem can be looked at
in two ways. Firstly, the trajectories can be com-
pared with those of the Coulomb potential, since
both potentials have a long range. Secondly, the
solution of the (nonrelativistic) radial Schrédinger
equation for the potential 1/r* is also the solution
of the (relativistic) Klein—-Gordon equation for a
potential as singular as the centrifugal term®, since

13 A, Bastai, L. Bertocchi, G. Furlan, 8. Fubini, and M.

Tonin, Nuovo Cimento 30, 1512 (1963).
14 A, P. Contogouris (to be published).
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for the scalar model potential, the Klein—-Gordon
equation is written as

(B~ V) —p" — m']y =0.

It is conjectured that the mth trajectory for
m — o would account for all bound states of the
system. It is seen that the positive-energy part of
the trajectories (for the attractive potential) are
unphysical.
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APPENDIX

We now give a very brief and simple derivation
of expansion (5.3). For a discussion of the validity
of the expansion and further details the reader is
referred to MS.

The eigenvalues of the Mathieu equation
(—m <z <7

v+ f@)y
=y’ + N+ 28 cos2@z £ My =0 (A1)

are largely determined by the behavior of f(z)
in the range for which this function is positive and
the solutions therefore oscillatory Thus, for small
values of h* and near 2 = Fir, Eq. (A.1) may be
approximated by

¢+ (N4 2Ry ~0.
Hence, [cf. (5.1)]

(A2)

= “nz + o(h?)

and (A.3)
N+ 28 =n? + AGP)-R.

Writing the first approximation for

v = ¢, = cosnz,

we see that v, leaves uncompensated terms in the
Mathieu Equation amounting to

R.¥. = (2 + 2 cos 2z — A) cosnz, (A4)

since (A.1) may be written
¢’ + 0’y = Ry

Now it is convenient to set'®

(A.5)

R, = hz[(n: 7+ 2)Ynsa

+ (n, n)¢n + (n,n — 2)\”»—2],
where
mn+2)=1=mn
(n,m) =2 — A,

=2 (ag)

However, a term uy,.,, on the right-hand side
of (A.5) may be removed by adding a further con-
tribution

- [F/4t(t + n)] Vnsas

(¢n+2: being a solution of
Mae F 0z = —410 + n)Pnsas)-

In this way we obtain successive contributions ¢®,

to ¢

¢®, -+ for ¢, where
=9+ PP+ 9P, A7
2 _ o (m,n 4 2)
\b - h[41(n+1)¢n+2
(n,n —2) ]
+ T Y
4(—n —1) (A8)

_ E[cos n —2)r  cos (n+2)a::|
"4l T m—D m+Dn |’

and so on. Then (A.7) is an eigensolution if the sum
of the coefficients of all ¥, [left uncompensative by
successive approximations such as (A.8)] is set equal
to zero. Thus,

mm+mg@~l 2,7)
_ (n,n 4+ 2)

———4(n .y n+ 2, n)} w9

+ v =0. .

This equation determines the unknown function
A(h®). Solution of (A.9) is readily seen to yield
expansion (5.3).
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We present a framework of quantum field theory which is wide enough to incorporate renormal-
izable, as well as nonrenormalizable theories. A universal high-energy bound for matrix elements of
fields is derived. The “string’’ approximation of the two-point function for various couplings is studied.

INTRODUCTION

IT is possible to formulate the content of any field
theory either by specifying the Wightman fune-
tions' or the time-ordered (retarded) functions. The
latter approach proved to be very convenient in the
past in the case of renormalizable theories. How-
ever, in the case of nonrenormalizable theories,
such an approach runs into difficulties.” In what
follows, it will be shown that the Wightman ap-
proach avoids many of the difficulties connected
with time ordering. Since we cannot handle a non-
renormalizable field in complete generality, we shall
content ourselves mainly with the so-called ladder
approximation. In this approximation we shall
show that both the two-point vacuum expectation
value and the two point matrix elements of fields
are well defined in both renormalizable and non-
renormalizable theories, and they admit a con-
vergent expansion in terms of the coupling constant
if the latter is small. Ladder approximation to
matrix elements and higher point functions are, how-
ever, not completely unique in nonrenormalizable
cases. It will be shown in a subsequent paper, that
there is one scaling parameter appearing, which can-
not be fixed by field-theoretical principles, at least
not in the considered approximation. This is contrary
to the claim of recent “peratization” treatments of
nonrenormalizable couplings which are based to a
great deal on analogies with singular potential
theory, an analogy which we consider as misleading.

The following remarks are devoted to the defini-
tion of a general framework which describes re-
normalizable theories and a certain class of

* The study was supported by the Air Force Office of
Scientific Research, Grant No. AF-AFOSR-42-64. .

t+ This work supported by the National Science Foundation.

{ Present address: University of Pittsburgh, Pittsburgh,
Pennsylvania.

1 A. S. Wightman, Phys. Rev. 101, 860 (1956). .

2 In Okubo’s and Giittinger’s work on nonrenormalizable
models, S. Okubo, Nuovo Cimento 19, 574 (1961), W.
Gittinger, Nuclear Phys. 9, 429 (1959), the basic quantities
are time-ordered functions in z space.
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nonrenormalizable theories. Since our concern is not
so much the “axiomatic” framework itself, but rather
an application of it to specific problems of ‘“‘con-
ventional” quantum field theory, the mathematical
rigor of this presentation will be modest.

1. DISCUSSION OF THE FRAMEWORK

We assume that the theory is given in terms of the
Wightman functions,® and that these functions have
the full analyticity domain in coordinate space that
follows from causality® and spectrum. There are
certain nonrenormalizable interactions of a very
singular nature which violate these requirements®; in
what follows these theories are excluded.

For practical purposes, in addition to the Wight-
man functions, matrix elements of the form
(P| ®&(z,) +++ ®(z,) |@) will be considered. (Here & is
the field and |P) and |Q) are energy momentum
eigenstates.) These quantities have analyticity prop-
erties similar to those of Wightman functions.®
Another property of Wightman functions that fol-
lows from spectral assumptions and causality are the
characteristic asymptotic fall-off properties. After
taking out the vacuum structure in a consistent
fashion, the so-obtained “‘truncated” Wightman
functions decrease in spacelike directions.” We re-
tain this property for nonrenormalizable inter-
actions.

In the case of renormalizable interactions, it is
T o1t was pointed out in B. Schroer, J. Math. Phys. 5,
1361 (1964), that the Wightman functions always can be
Fourier-transformed and that all the information necessary
to compute the S-matrix resides in the Wightman funections.

¢ With causality we do not necessarily mean the “opera-
tional” formulation in terms of localizable smeared-out fields
(given, for example, in R. N, Streater’s and A. 8. Wightman's
book, PCT, Spin and Statistics and All That (W. A. Benjamin,
Ine., New York, 1964) but only the “formal’’ statement that
Wightman functions are symmetric for spacelike separated
points.

§ See Ref. 3. In this paper the terminology “renormalizable
of 1st and 2nd degree’ was used.

¢ R. N. Streater, J. Math. Phys. 3, 256 (1962).

7 H. Araki, K. Hepp, and D. Ruelle, Heﬁv. Phys. Acta 35,
164 (1962).
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generally assumed that Wightman functions are
tempered distributions in the ecordinate space, and
this assumption is supported by perturbation theory.
This means that the usual light cone singularity that
appears when two coordinates x; and z, approach
each other is not worse than [(z, — z,)°]™ for a
certain n. If the interaction is nonrenormalizable, it
is in general necessary to give up this temperedness
assumption.” We therefore admit an arbitrary strong
singularity near the light cone, and retain all the
other properties of Wightman functions which are
valid in ordinary renormalizable theories. These
properties enable us to define a Fourier transform,
no matter how bad the light-cone singularities are.

Let us give a brief discussion of this statement for
the matrix element:

F(z; P, Q) = (P| ®(—z/2)®(z/2) |Q)..
= (P| &(—z/2)2(z/2) |Q)
— (P| ®(—=z/2) 10X0| 2(=/2) Q). (V)

According to the previous remarks, this z-space dis-
tribution is the boundary value of an analytic func-
tion analytic in the holomorphic envelope of the
union of the forward and backward light cone and
the spacelike points. In this analyticity domain the
function is symmetric under # — —z. The Fourier
transform is defined by

Fk; P, Q) = [1/(2x)"]
X lim | d'z e” ™= O Ry, + 4, x; P, Q)

0

where ¢ — 0 through positive values. If F has bad
singularities at 2, = =(x*)! we cannot let ¢ — 0
in the integrand. However, since for real x, F is
analytic in the z, plane cut from (x°)to « and from
— o to —(x*)}, we can distort the contour of inte-
gration in Eq. (3) so as to avoid the points
7, = ==(x*)!. The existence of the Fourier transform
is therefore assured even for very singular theories.

It is possible to derive a simple bound on the
growth of F(k; P, Q) for large k. As explained before,
¢ in (2) can be taken to be finite. The function ¥ on
this new path of integration is certainly bounded, and
its Fourier transform will go to zero for large k by
the Riemann—Lebesgue theorem. Therefore

3

Moreover, € > 0 can be taken arbitrarily small, It is
also easy to see that by Lorentz invariance, ¢k, can
be replaced by ek”", where ¢, is an arbitrary four
vector in the forward cone. So the Fourier transform

F(k; P, Q'™ — 0 as ko— .

exists and is bounded as k — o« along any fixed
direction by ¢*”'** where ¢ > 0 and arbitrarily
small. This discussion can be generalized to higher
point-expectation values. All Fourier transforms
will be asymptotically of zero order growth.® The
time-ordered boundary prescription

(P| To(—2/2)2(2/2) |Q)

= liI? F(z, + iesign z,, x; P, Q) 4

in general does not define a distribution (i.e., cannot
be smeared with test functions nor Fourier trans-
formed), notwithstanding that, with the exception
of the light cone, (4) will be a perfectly well-behaved
function in most cases.

If the Wightman function happened to be a
tempered distribution, then the time-ordered func-
tion can be identified with a certain subspace of
distributions, by applying dispersion theoretical
techniques to the Fourier transformed Wightman
function. But in general, there is no natural concept
of Fourier transformation for time-ordered functions.

Finally we remark that condition (3) puts a uni-
versal high-energy bound on the total cross section.
The zero-order growth for the cross section is much
weaker than the polynomial growth in renormalizable
theories, but by using analytic properties one can
presumably improve on this bound.

2. TWO-POINT FUNCTION

The previous discussion showed that the Fourier
transform 5(k%) exists:

0l 202 10) = ") = [ d'% ™ o)s)  (5)

and 5(k”) has support in the forward cone and is
bounded by e**"” for large k* (¢ > 0, arbitrary). We
now want to show that a violation of this bound
leads to the development of a spacelike cut in the
¢” plane. Assume for example that 5 behaves for
large &” like

pkY ~e**' with « > 0. (6)

If the spectral condition is satisfied, i.e., (k%) = 0
for k* < 0, p(z*) in (5) converges for Im z, > «. For
other values of z*, p(2") is determined by analytic
continuation. For 2” real and <0, p(z*) can be writ-
ten as follows:

o0 = [ % e otk s

where A = —2°,

* We are using the language of J. M. Gelfand and N. Ya
Vilenkin, Generalized Functions (Academic P ., 1
York, 1965), Vol. 4. ( e Fross Inc, New
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According to (6) this integral diverges for A < o°.
It then follows that there must be a singularity at
A = o, since otherwise we could prove from the
inverse transformation that 5(k*) is asymptotically
bounded e*”*, in contradiction to the assumption
of (6). This brings us back to the old bound given in
(5) and the original domain of analyticity.

We now turn to a discussion of the two-point
function in the so-called string approximation for
three different couplings. The first coupling is the
super-renormalizable &° interaction, the second one
is the &* interaction and illustrates a renormalizable
theory. Finally we consider the derivative coupling
of the vector field to a scalar field as a model nonre-
normalizable theory. The main points that emerge
are the following:

(a) The equation of motion, combined with
boundary conditions imposed by the spectrum,
uniquely determine the solution in all cases. The
solution is expandable in powers of the coupling
constant for all values of this constant.

(B) The singularity near the light cone becomes
worse as one proceeds from the super-renormalizable
to the renormalizable case.

(v) Inthe case of renormalizable theories, Fourier-
transformable time-ordered functions can be defined
(by subtraction procedure) up to a polynomial
ambiguity whose degree depends on the coupling
constant. For nonrenormalizable theories, an infinite
number of arbitrary parameters enters the definition
of these objects.

a. Super-renormalizable Theory

We start with the following interaction Lagrangian
density:

Lin = (9/2)¢°(x) A(2) + H.C. @)
which leads to the equation of motion,
(O + me(z) = (9/2)[¢(x), A@)].. 8

The fields ¢ and A, of masses m and M, respec-
tively, are taken to be real and scalar. Defining the
Killen-Lehmann two-point function of field ¢ by

o) = [ d%e*EE) = 0] 400 [0, ©

we have
(0. + W0, + M)z — v)°)
= (¢*/9)0| [¢(z), A@)].[6(»), AW)]+ [0).  (9)

We have so far not defined the product of two
field operators at the same point, hence the expres-

sions written down so far have only formal meaning.
The problem of the specification of this product is
tied up with the question of the renormalization of
the complete theory and in this paper we do not
attempt to answer this difficult question. However,
in the string approximation we are contemplating,
this difficulty can be side stepped. Taking (z—1y)*<0,
we can formally commute 4 (z) with ¢(y) in Eq. (9°)
and obtain

0] [¢() A(@)]+[6() A@)]. |0)
= ([¢(@)(x) A(x) AW)|)
= (B(z)2(y))o( A(2) A[®))o
+ ; 0] (x)o() |PXP| Ax)é(y) [0)

where we have inserted a complete set of inter-
mediate states in the last step. The product of the
two-point function, as well as the product of the
matrix elements

M. (z, y) = (O] 2(x)2(y) [PXP| A()A®) |0),

is always well defined since in momentum space it
amounts to a finite convolution. However, the sum-
mation over infinite large intermediate energies leads
in general to a divergence. A proper definition of the
operator product would have to take care of this
divergence. The string approximation consists of
only retaining the vacuum as an intermediate state
and also of replacing (0] A(z)A(y) |0) by the free
propagator. This gives the following differential
equation:

2 __d2 2 ? 2 2. (+), 2
(4’” ay +8 Elgal? + m) pa®) = g%A PV (z )p(ﬂ{l)(,))

where
A = A BO (Y
8z (%) ! :

It is clear that by analytic continuation this for-
mula holds not only for 2* < 0 but for all complex z°.
The solution will be analytic in complex z* plane
cut for positive real z°.

Equation (10) can be solved uniquely if one im-
poses the boundary condition that for large z?
p(2?) goes like

7 B,

This follows from the fact that the lowest interme-
diate state, with a one-particle state of mass m,
dominates the large-distance behavior of p(z*). The
integral equation that results from Eq. (10) is most
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conveniently written on the half line — « < z* < 0.

Defining A = —2%, p(—\) = h(A), D(\) = A(—\) =
(M /4x* (MK, M (V)Y we obtain
A = gz KalmO)?)
+ ¢ fx TaNGO, V) DOVRGY), (1)
where
GO, N) = o s a VKL O) T {mO))
— Ky[mMWLIm(\)1).

Equation (11) is clearly the only integral equation
that preserves the asymptotic normalization given
by the inhomogeneous term. It can be solved by
successive iterations in the form of a power series
expansion. The equation is of Volterra type, and the
kernel is of bounded norm in the space of functions
square-integrable on the interval 0 < A < », It
therefore follows that the iteration always con-
verges,” and the solution is an entire function in g°.
As a consequence, no bound states can emerge in
this approximation.

The momentum space equation corresponding to
(11) is

pk?) =

2 2 g’
ooy P = )+ G =y

x [ dq 8k — 9" = MIKD. (12

This equation can also be solved by a convergent
iteration scheme like (11).

We want to determine the behavior of p(k®) for
large k°. First note that the most singular solution of
Eq. (10) near z° = 0 behaves like 1/z°. A glance at
Eq. (11) shows that such a singularity is present
and comes from the free propagator contribution, but
once the function [m/4x*(\)¥K,[m(\)?} is subtracted
from p(z”), the rest is only logarithmically divergent
near the origin. Now the following formula can
easily be established:

B0 = —(i/4e") § dr@ PTIER o). (13)

The contour of integration C is indicated in Fig. 1.
Since p(z*) is L integrable on the real positive z* line,
it follows from the Riemann—Lebesgue theorem that
p(k*) decreases at least like 1/%° for large k°. In this
approximation, one can take such a momentum
space bound as the definition of a super-renormal-
izable interaction.

F1a. 1. The contour of integration in z? plane.

We finally observe that the time ordered two
point function (0] T¢(0)¢(x) |0) has the following
momentum space expression:

1 —tkz
e | 4701 T804 [0)
- f pz ﬁ(pz) i
21 Jo P —~ K+ e
Since p(k*) goes to zero at infinity, the integral in

question converges, and there is no trouble in
uniquely defining time-ordered functions.

(14)

b. Renormalizable Theory

Consider the interaction Lagrangian density

Liav = (9/2)¢*(2)A*(x) + H.C.

where the real scalar fields ¢ and 4 have masses m
and M as before. The equation for the two-point
function in the string approximation is

(42 2 + 8 g5 + ) &) = i @0le.
13

1A (z*) is the free scalar propagator of mass M as
before.

As in the previous case, one is led to a Volterra
equatlon similar to (11), with A(z*) replaced by
A’(z”). The conclusions reached in the previous case
continue to hold with the exception of large k* be-
havior of p(k?). To determine this behavior, we need
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to solve Eq. (15) near z° = 0. Making the ansatz
p~ (2°)® near 2° = 0, we obtain the following secu-
lar equation:

o’(@® — 1) = ¢*/16(4x")’,
with solutions

= {} + 301 + 740"},

a = {} — 31 + ¢7/4@0 T},
a = —{} — i1 + ¢*/4@0) T},
a = —{} + 31 + /420

We denote the solution that behaves like (z°)*°
by p;. Clearly, the most singular of these functions
is p,, which is more singular than 1/2°. All the other
solutions are bounded near ° = 0. Since p(z°) must
be at least as singular as 1/2°, it must contain p, with
& nonvanishing coefficient. It is clear that p, is
responsible for the leading asymptotic behavior of
p(k).

In Eq. (13), we make a change of variable and
also split the range of integration in two parts:

() = —= 41rs yx { f f }dy WML
X ap(y*/kY,  (16)

where Ap is the jump of p across the cut, and e is a
small number. To the integral extending from e to «,
we can apply the Riemann-Lebesgue theorem, since
the integrand is bounded in this region. The integral
running from 0 to e may be evaluated asymptotically
for large k* by replacing p by C(z*)*. Neglecting
insignificant multiplicative constants, we have the
following asymptotic estimate:

) ~ /) [ I

~ (k2)—au—2.

Since e, can be arbitrarily large for large ¢°, p can
behave like an arbitrarily large power of (k%). It is
clear that the time-ordered function given by (14)
may need an arbitrarily large number of subtraction
constants for its definition. This situation, if it
persists in an exact theory, will give rise to serious
difficulties in the usual renormalization procedure,
where one cannot identify a large number of am-
biguities with the renormalization of mass and coup-
ling constant.

¢. Nonrenormalizable Interaction

an

We take a real vector meson field A of mass M,
coupled to a real scalar field ¢ through derivative

coupling. The interaction Lagrangian density is
Lind= (9/4)Wn(i¢an¢) + H’C')

and the equation of motion in the string approxima-
tion reads

(4“" oy Bt ”")z"@
= gAY (27)[9,9,0(2Y)],

where A,, is the vector meson propagator given by

1 .
Am(zz) ( (] Mz ana-)'LAH)(xg)'
The final equation is

4 d 2\
(4.’5’&@'5}3"!‘83;5'}'”@);}(.’62)

= g Z{ A(+)($2) —g — %

Ms A“)’(:c?) %ﬁjﬁ}i’(x’L

(18)

The equation can be converted into a Volterra
integral equation similar to Eq. (11). However, the
kernel now contains the operator

= darr s € 24
o_z(ﬁA @) -2, d(x))

instead of the function ¢A‘*’ (z°). We shall show that O
is a bounded operator in the interval —» < 2° <
—e < 0 applied on functions analytic except for the
cut on the positive real axis. (Here ¢ is a fixed posi-
tive number.) First of all, both A(z*) and A'(z?)
are bounded functions on this interval. Secondly,
given an analytie functmn in a reglon mcludmg the
interval — o < 2° < —¢, if 5 is the minimum dis-
tance from the boundaries of this region to a point
on this interval, then the operation of differentiation
increases the maximum modulus of this function at
most by a factor of 1/8. Hence if we norm these
analytic functions by their maximum modulus, O
turns our to be a bounded operator in the interval
—® < 2° < —¢, whose bound, however, increases
with decreasing e. It then follows that the 1teratlon
solution of the Volterra equation converges for all g*

so long as 2° is different from zero.

Let us investigate Eq. (18) near 2* = 0. To obtain
the four different asymptotic solutions near the
origin, we make the substitution p = exp [f(2°)],
and solve for the most singular term of f. The result-
ing asymptotic solutions are as follows:

~ @' exp {2%5' (x}') }

2A(+);( )
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From positive-definite metric and the existence of
one-particle state, it follows that for z* negative
and near zero, the correct solution must be at least
as singular as 1/2”. Therefore, it must contain p, with
a nonvanishing coeflicient, since all the other p’s are
bounded near the origin. In order to determine the
asymptotic behavior of p(k*) for large k*, we can
clearly restrict the integration region in Eq. (13) to a
small loop near the origin and replace p by the
asymptotic form of p,. After a change of variable,
this yields

306y ~ i [ ay i) e {E80} o)

where G = 6g/2xM. The asymptotic form of this
integral can be evaluated by the saddle point method.
The details are as follows.

For large k, we can replace J:[(k)¥y] by its asymp-
totic form [(k)ty]™ exp [21(k)'y], where the sign is
always determined so as to get the larger of the two
exponentials. Neglecting insignificant multiplicative
constants, Eq. (20) can be converted into the fol-
lowing form:

5 ~ & [ dy v exp iy + G/

The saddle point is at ¥, = ¢(G)}, and evaluating
the above integral around y,, we obtain

p(K?) ~ k7" exp {2(GR)}. (1)

An exponential growth of this sort in momentum
space, or equivalently, an exponential blowup near

the origin in position space, may be taken as the
characteristic feature of nonrenormalizable theories
in this approximation, just as the power growth given
by Eq. (17) was a feature of renormalizable inter-
actions. It is to be noted that the bound given by
(3) is never violated.

The concept of time ordering has to be given up
when the momentum space behavior is as singular
as given by Eq. (21), since one then needs an infinite
number of subtraction constants to make Eq. (14)
well defined.

One may finally ask whether the results of the
previous discussion, namely expandibility in pertur-
bation theory and essential singularities of exponential
type near the light, depend crucially on the string
model. It is, of course, very hard to verify these
properties in any realistic situation. However, one
can present an exactly soluble model discussed in
Ref. 3 as a support for the above conjectures. This
model contains a fermion field ¥ of zero mass which
satisfies the following equation:

WY(2) = ¢ mA)¥(E): (22)

where A,(z) = 3,¢0(z) and ¢o(z) is a free scalar field.
The two-point function has the following exact solu-
tion in this model:

(W@ I@)) = Go(@de®))e™ 7,

where ¢, is the free fermion field. This solution
exhibits the properties of expandibility in ¢* and
the singular structure near z° = 0. Of course, it is
not clear whether this situation persists in a more
realistic model.

(23)

ACKNOWLEDGMENT

The authors would like to thank Professor J. R.
Oppenheimer for his hospitality at the Institute for
Advanced Study.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 1 JANUARY 1966

Local Approximations in Renormalizable and
Nonrenormalizable Theories. I1

K. Barbakcr*
The Institute for Advanced Study, Princeton, New Jersey
AND
B. ScHROER

University of Pittsburgh, Physics Department, Pittsburgh, Pennsylvania
(Received 18 March 1965)

The investigations of a previous paper are generalized to two-point matrix elements. A principle
is formulated, which yields unique finite Feynman rules in the renormalizable case, i.e., permits a
unique separation of counterterms. For nonrenormalizable theories this principle yields uniqueness
up to a “scaling’”’ parameter. The results are generalized to a large class of Feynman graphs. For this
subset of graphs, field-theoretical principles do not determine this scaling parameter.

INTRODUCTORY REMARKS

N a previous paper,” Wightman’s framework® of
quantum field theory was slightly generalized in
order to allow for nonpolynomial high-energy be-
havior of the expectation values. It was shown that
for equal fields (interaction via another field) a con-
vectionally nonrenormalizable theory leads in the
“string approximation” to a two-point function with
exponential increase if the points are getting closer
in spacelike direction. The physically more interest-
ing case which contains scattering information is
the case of the two-point matrix element. In the
ladder approximation one can derive a fourth-order
differential equation for this object. The spectrum
condition leads to two boundary conditions. Normal-
ization conditions which were available in the case
of the renormalized vacuum expectation value and
lead to a complete set of boundary conditions, do not
exist for the matrix element. Being unable to formu-
late such conditions directly, we look at the per-
turbation theory. This leads us to the problem of
determining the matrix element of the field from a
given current matrix element, i.e., the inversion of
the Klein—-Gordon operator for a given inhomo-
geneous part of the differential equation. This in-
version problem is studied in detail, and the form of
the ambiguity of the result is determined. A principle
abstracted from the fundaments of quantum field
theory and the usual renormalizable perturbation
theory is formulated to eliminate this ambiguity. In
contradistinction to the conventionally used ‘‘mini-
mal short distance’” singularity principle (in dis-

* This study was supported by the Air Force Office of
Scientific Research Grant No. AF-AFOSR-42-64.

1 K. Bardakei and B. Schroer, J. Math. Phys. 7, 10 (1966),
previous paper, referred to as L.

2 A. 8. Wightman, Phys. Rev. 101, 864 (1964).
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persion theory known as the “minimal subtraction”
principle), our principle eliminates the contact term
ambiguity without making an a priors restriction on
the high-energy behavior. Applied to nonrenormal-
izable theories it does, however, not lead to complete
uniqueness; we only obtain uniqueness up to a scal-
ing parameter. In every order the matrix element
fulfills causality and spectrum condition. The con-
sideration can be generalized to all Feynman graphs
whose divergence in the conventional approach origi-
nates from an improper treatment of the inversion
of the Klein—-Gordon operator for a given but singu-
lar current. Those Feynman graphs we call the CI
(current integration) graphs. The rest of the con-
ventionally divergent graphs are infinite because of
the naive handling of local operator products in the
same space-time points. These CL (current limiting)
graphs® are not treated in this paper.

1. GENERAL PROPERTIES AND INTERPRETA-
TION OF THE TWO-POINT MATRIX ELEMENT

Spectrum conditions and causality pose a con-
siderably more difficult problem for the matrix
element

(P| 2(=)2@) |Q) M

than for the vacuum expectation value. The most
general matrix element was given in form of a repre-
sentation for the commutator by Jost and Lehmann*
and Dyson®:

3 This terminology arises from the allegation that a careful
space-time limiting procedure is a remedy, i.e., allows a com-
plete finite treatment (without any ad hoc cutoff) of these
graphs. The existence of a space-time limiting procedure for
the definition of the current was shown in certain soluable
models. See for example, K. Johnson, Nuovo Cimento 20,
773 (1961).

* R. Jost and L. Lehmann, Nuovo Cimento 5, 1958 (1957).

8 F. J. Dyson, Phys. Rev. 110, 1460 (1958).
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1AL () p(, X) di.
)

Here p is the Jost-Lehmann kernel (for identical
fields we do not need the more general Dyson kernel)
which is entire in x. The order of this entire funetion
reflects according to the Payley—~Wiener® theorem the
shape of the support of its Fourier transform 5(x*, u)
following from the particular spectrum condition of
the matrix element (1). After subtraeting out the
vacuum intermediate state, the support of p is

@2 M = (= )P
where M is the mass of the lowest intermediate state
in (1) and P + Q)* = m". This formula has been
derived for renormalizable theories in which case

¢ turns out to have a polynomial bound in «*. We
observe however, that the formula

Pl @), (11 10 = [

[u] < m,

F, = fz'A,f?)(:c)p(x"’, x) d2*
makes sense for all kernels which are in (x*)! of
zero-order growth.” In this case F, is analytic for
spacelike z and for Im 2 < 0 resp > 0. The Fourier
transform therefore can be defined by the technique
of contour shifting as explained in I. Hence the
Fourier transform of (2) exists, and one easily checks
that it is of zero-order growth as expected.

We argue now, that also the converse argument
applies, i.e., starting from a matrix element which
belongs to the nonrenormalizable class discussed in I,
one can derive the Jost—Lehmann representation (3)
with the kernel p being of zero-order growth. A formal
proof is outside the scope of this paper. The asymp-
totic fall-off properties® based on the representation
(3) and needed for a derivation of the asymptotic
condition can be carried over to our larger class of
nonrenormalizable fields.

In the next section we will study local approxima-
tions for the two-point matrix element. Using similar
arguments as in I, we will obtain partial singular
differential equations. The problem of solving these
differential equations is tantamount to an inversion
of the differential operator. As it is well known from
potential theory, in order to find the “right” in-
version, the differential equation has to be supple-
mented by an interpretation of the quantities in-

¢ For example, I. M. Gelfand and G. E. Schilow, Verallge-
meinerte Funktionen (VEB Deutscher Verlag der Wissenschaf-
ten, Berlin, 1962), Vol. II, Chap. III.

7 As in I we use the terminology of I. M. Gelfand and N.
Va. Vilenkin, Generalized Functions (Academic Press Ine,
New York, 1964), Vol. IV, p. 87.

s H. Araki, K. Hepp, and D. Ruelle, Helv. Phys. Acta 35,
164 (1962).

3)

volved. From the general framework of quantum
mechanics one knows that the Schrédinger ampli~
tude is an L’ integrable wavefunction and that the
differential operator is a self-adjoint Hamiltonian.
In this case the differential equation defines a self-
adjoint Hilbert space problem, and the Schrédinger
boundary conditions at the origin are a consequence
of this framework. A matrix element of fields is,
however, a quite different object than a Schrodinger
wavefunction. Consider for example the matrix
element

(0] 2(2)2@) |¥). @)

This amplitude gives a measure for the probability of
finding “field excitations,” i.e., partial deviations
from the vacuum around the points z and y “after”
the state |¢) has been prepared. Note, however, that
this probability interpretation is only relative, i.e.,
only the ratio®

KOI P(2)B(y) hp)l? ()
0] 2)e) W)

has a meaning. This relative probability interpreta-
tion does, however, not lead to & self-adjoint Hilbert
space problem. The only analogy with potential
theory is obtained for large spacelike separations of
the field excitations.

If we take as [¢) for example an incoming two-
particle state, then'

(Ol CP(%X, 0)@("%’:, O) ]kin>
~ (0] ™(x, 0)2""(~ix, 0) [&™)

€

—>

[ERRed

ikr

— f(k, cos 6). ®)
Here |k'™) denotes the two-particle state after taking
out the center-of-mass motion, i.e., writing the two-
particle Hilbert space,

% = 5P) Q %i;

|k) is a vector out of the “little” Hilbert space. The
coefficient f in front of the asymptotically least de-
creasing term is proportional to the elastic scattering
amplitude and hence has an absolute probability
interpretation.

It may be not uninteresting to point out that there
is even a difference in the way the left-hand side
approaches its asymptotic limit. In potential theory,

. ? For spacelike = and y as well as 2’ and 3/, and for |¢)
with bounded energy, this 1s the quotient of two analytic func-
tions. See R. N. Streater, J. Math. Phys. 3, 536 (1962).

10 Stationary scattering formulas of this type can be ob-

tained from the Haag~Ruelle collision theory. A derivation
of this and related statements will be discussed elsewhere.
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the decrease is faster than any inverse power of r
(““‘wave zone” behavior), whereas in local field theory
there is a hierarchy of inverse powers. The coefficients
of these inverse powers correspond to amplitudes of
inelastic processes in very special final-state con-
figurations. The analogy with potential theory breaks
down completely for short distances, in which case
the quantum field-theoretical framework does not
give a L® integrability property of the matrix ele-
ments.

It is well known that these interpretational fea-
tures have caused considerable confusion in the
history of the Bethe—Salpeter equation,’* which was
initially thought of as a relativistic description of
the quantum mechanical two-particle wavefunction'®
rather than an equation which describes the propa-
gation of field excitation (and which only asymp-
totically has a particle probability interpretation).
An often-cited “argument’ in favor of an L* integ-
rability boundary condition at the origin is the
allegation that the nonrelativistic limit of the Bethe~
Salpeter amplitude is the Schrédinger equation.'?
However, if one takes the nonrelativistic approxima-
tion literally (i.e., |p:|* < m®), a (ladder) approxima-~
tion for a nonrelativistic quantum field theory is
obtained for which the matrix element of “field
excitation” does not have an absolute probability
interpretation either. It is only after the subsequent
step of neglecting creation and annihilation features
by introducing an effective potential in the elastic
region, that field-theoretical short-distance behavior
is completely destroyed and any insight is lost.

Our remarks on the interpretation are presumably
not new to field-theoretical experts. They are, how-
ever, helpful for an appreciation of our perturbation-~
theoretical treatment in the next section. From an
analogy with the two-point vacuum expectation
treatment one would expect an exponential increase
for the equal field matrix element (1) if the spacelike
distance decreases. This indeed turns out to be true
for the summed up perturbation series and is in
remarkable contrast to the result of Sawyer' and
Domokes and Suranyi'® who proposed in certain

( 9‘; I)l A. Bethe and E. E, Salpeter, Phys. Rev. 84, 1232
1951).
12 A relativistic theory of a fixed number of particles is
uite different from the Bethe—Salpeter equation. See F.
oester, Helv. Phys. Acta (to be published) and references
given there.
13 In certain ‘super-enormalizable” cases the Feymann
}S):‘l;turbation theory indeed gives L? integrability at the origin,
G. C. Wick, Phys. Rev. 96, 1124 (1954); R. E. Cutkosky,
1bid. 1135 (1954).
1 R, F. Sawyer, Phys. Rev. 134, B448 (1964).
( g g} Domokos and P. Suranyi, Acta Phys. Hung. 17, 107
1064).

models (fermions interacting via fermion pairs) solu-
tions which behave for short distances like
p = =kt

exp {fo/r}, =o' -2

The L” solutions are increasingly oscillating for space-
like and Euclidean distances and exponentially in-
creasing for timelike distances. The findings of these
authors is based on the analogy of the Bethe-Salpeter
equation in the unphysical Euclidean region with
potential theory. However, not every solution of the
differential equation in the Euclidean region fulfills
the analyticity requirements following from causality
and spectrum (incorporated in the Jost-Lehmann—
Dyson representation) which are necessary in order
to continue back into the physical points. It is an
interesting question, whether these solutions solve
the physical problem at all, and moreover whether
there are any solutions in accordance with the princi-
ples of quantum field theory besides the one we con-
struct in the next sections.

2. LADDER APPROXIMATION

For simplicity, consider an interacting neutral
scalar theory of mass m, the interaction proceeding
through a vector meson of mass M. The interaction
Lagrangian is taken to be

Lia = (9/41W(29°F) @

where ® is the scalar field and W the vector field.
Applying the Klein—-Gordon operator twice to the
matrix element

(0] 2(=)2() [¥) ®)
and using the equation of motion we formally obtain
(0. + m’)(O, + m)0| 2(x)2() [¥)

= ¢%(0] W*(2)3,2@)W"(%)9,2() [¥)  (9)

as in the two-point function case we take y space-
like with respect to z, commute W'(y) to the left,
and insert a complete set of states. Retaining only
the vacuum intermediate state and taking the W,
propagator to be the free one, we obtain

(0. + m)(O, + m)0| (z)2@) [¥)

= ¢%A. (x — Y)8i90]| 2(@)2() [¥)  (10)
where

18, @) = i[gs + (1/M?)8,9,]047 ()
with M the W mass.

If |¢) does not have infinite energy components,
then the product of the two distributions is perfectly
well defined as in the two-point vacuum case (I).

(11)
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The main problem is now to find the *‘right”
inversion of the differential operator. Consider the
problem first in renormalizable perturbation theory.
Suppose the matrix element (8) is known in nth-
order perturbation theory in g°. Then the problem
posed by (10) is the local integration of the matrix
element of a local eurrent. The solution is a particu-
lar local solution plus the most general local solution
of the homogeneous equation. The latter is given in
the following theorem.

Theorem: The most general local solution of the
homogeneous equation

(0. + m)G(;y) = 0 (12)

is
N
C@;1) = 2 ) DAV —9) (13)

where a,,...,, are tensorial functions of all variables
excluding z.

Proof: Consider the commutator
H=Gx:y — Gy ;2), (14

H = 0for (z—y)° < 0. Since (O, + m*)Q(z : y) =0,
it follows that (00, + m*)G(y : 2) = O for z and y
spacelike separated. By analytic continuation, this
result holds for arbitrary z and y. Therefore, H
vanishes for spacelike distances and is a solution of
the homogeneous equation. According to a theorem
of Garding and Malgrange any distribution solu-
tion™ of the wave equation can be written in terms
of distribution initial values on the hypersurface.

Ha ;) = [ 8@~ ) 0, Hx, ab 5 y-a) .
15)

Since the initial value has point support (according
to locality), one obtains

H(z :y) = gz Qoyovenay) D270 A — ). (16)

Since it satisfies the homogeneous equation,
G(z : y) has a Fourler transform in the relative co-
ordinate z — y whose support is contained in some
positive cone. Hence the commutator (16) can be
uniquely disentangled and leads to Eq. (13) for the
matrix element.

With the help of this theorem we obtain the most
general solution for the inversion of

(0. + m)0] 2@iw) ¥) = gz, y;®), (A7)
18 L, Garding and B. Malgrange, Math. Scand. 9, 5 (1961).

0 2@i0) ¥ = [ K@ — o9, v; 9) de

+ EO Gooond(y) D2V K(x — y),  (18)
with

SR (2 }

K¢ = WK’W@) 1 (19
Here we have for convenience rotated into the
Euclidean region, which is permissible if [¢) is re-
stricted in energy.” From now on all formulas are
meant in the Euclidean region unless stated other-
wise.

For plane a wave states: [¢) = |P) translation in-
variance yields

(20)

In renormalizable theories the contact terms on the
right-hand side of (18) are conventionally excluded
and uniqueness is obtained by insisting that only
solution with mildest short-distance behavior'” are
to be taken. We reject this philosophy for the fol-
lowing reasons:

{a) It prohibits the understanding of short-distance
behavior as an integral part of the theory itself and
is tantamount to an a priort commitment on a
feature of the theory we know least about. For non-
renormalizable theories it brings an increasing
amount (with perturbation theoretical order) of
arbitrariness.

(b) Even in renormalizable theories the philosophy
of minimal short-distance singularity runs into dif-
ficulties once one goes outside of perturbation theory.
The short-distance behavior may be worse for the
summed up series depending on the size of the cou-
pling constant.

We want to eliminate the ambiguities of the
inversion problem (17) where g is the source term
given in the previous perturbation iteration. [In
what follows, we sometimes suppress the depend-
dence of g(z-y : ¢) on the quantities y and simply
denote it by g(x).] We assume that the inversion
operator ([1. + m") ™, considered as a mapping on
the linear space of Wightman functions, commutes
with all the operators that commute with the opera-
tor (00 + m?) itself. There are two sets of operators
that commute with the Klein-Gordon operator:

= g, d/dx, —

a,@) = e a,.

(i) The ‘“Lorentz” generators M,,
z, 8/9x,.
(i) Generators of translation T', = 3/dz,.

17, Steinmann, “Perturbation Theory in the LSZ-
Formalism,” N.Y.U. preprint, and references given there,
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These operators are supposed to act on a single
distinguished variable = in the space of Wightman
functions and should not be confused with the
generators of the Poincaré group in the state space.
However, the requirement that (O, -+ m*)™" com-
mute with M ,, and T, ensures the Lorentz and trans-
lation invariance of the result of the inversion, if the
input has the same properties. Explicitly written,
we have

(O 4+ )7 M,gl() = M,{[(O + m)7'gl@)},
21

(O + m))7 Tgl@) = T(O + m)7'gl), (22)

where [(O0 + m?) "g](z) fulfills
KO + =)0 + m)7'gl@2) = g().

In the case of g{x) which are not too singular near
7* = 0, there exists the well-known Feynman pre-
seription which solves the inversion problem:

01 2@I6) 19) = [ K@ — 29, v, v) d'o'. (29

Equation (24) agrees with Eq. (18) with the contact
terms on the right hand side set equal to zero. It
can explicitly be checked that the above formula
yields a causal Wightman function which satisfies
Egs. (21) and (22), if these equations are already
satisfied by the source function g.

There is a natural way to generalize the Feynman
prescription to singular input functions coming from
nonrenormalizable theories such that all the require-
ments we have stated are automatically fulfilled.
Consider in the Euclidean region in z* the analytic
function

(A7) A>0.
The boundary value taken from Im z > 0 at the
Minkowski points defines a bona fide Wightman
function (whose Fourier transform is contained in
the forward light cone, and is positive-definite for
large real «). Define the “source’”’ function

gu(2) = (A/2)"g(@).

Clearly, for « — 0, g. converges towards ¢ in the
topology of Wightman-distributions. Define a solu-
tion

@9

(25)

0l 2@i@) 0 = [ K@ — 2.’ ) da’ (20

for arbitrary « as the analytic continuation starting
from Re « being sufficiently large negative where the

integral converges. If the singularity of ¢ is direc-
tional-independent and behaves like [C/(z — ¥)°]°
with 8 = integer to start with, then the limit @ — 0
can be taken in (26) and the result is not dependent
on A. If, however, #8 is an integer, then one may en-
counter poles in a for « — 0. In this case we define
a solution by multiplying ¢ with 1/a and taking the
residuum around @ = 0,

O] 2(=)i@) [¥)
1

i @7)

%?fK(x — aNg.x’ ) dx’.
It is easy to check that this definition of a particular
solution for integer 8 reduces to the previous one
whenever o = 0 is not a pole. In both cases we ob~
tain a solution of the inhomogeneous differential
equation which fulfills the translational property (21)
for any g,. The Lorentz-transformation property
(22) allows to make a partial wave decomposition
and discuss the particular solution (27) indepen-
dently for any partial wave. We will use this in the
next section. It is anticipated here, that this process
works in any order of perturbation theory.

The prescription (27) is intimately connected
with the “finite part” of Hadamard'® and has been
championed for many years by Caianiello,”® who
proposed it in the context of Dyson’s renormalization
procedure. The crucial step is now to find out whether
our insistence in the ‘‘universality’’ of the inversion
(O 4+ m*)™* fulfilling (21) and (22) leads to the
Feynman prescription and to our generalization (27)
for the singular cases. In the more detailed diseussion
in the next section it becomes evident that the Feyn-
man prescription as well as (27) indeed fulfills our
principles. The ambiguity we eliminated in (13) can
be written as

N
¢ 3 ) DK G — 1), (9

where according to our interpretation as ([7 + m®)™
as being universal continuous linear mapping on
space of Wightman function, the a,,...,,(g) are con-
tinuous linear functionals on the space of all (tem-
pered) Wightman functions. Evidently a replacement
g — T.g does not lead to a differentiation of K, and
hence

Gore-0alg) = 0.

18 J. Hadamard, Lectures on Cauchy's problem in Linear
Partial Differential Eguations (Dover Publications, Inc.,
New York, 1952).

(19‘5’9})33. R. Caianiello, Nuovo Cimento, 13, 637 (1959); 14, 185
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3. DISCUSSION OF CONVERGENCE OF THE
“LADDER” PERTURBATION SERIES IN A
SPECIAL CONFIGURATION

Now consider the expectation values of the product
of two field operators in a one-particle state |¥). We
derive a “ladder” equation for it, which is analogous
to (10),

(3. + m)(O, + W) Y| 2@)2G) |¥)
= g"(Y| W.@)3"2@)W.()o"2() |¥);  (29)

commuting for spacelike distances and retaining as
intermediate state only ||¢||™" |¢) we obtain

(4. + mz)(D + m ) (Y| ®(x)2) |¥)

=] ‘p“z ¥ W)W, (y) W)o:0,(¢| 2(@)2(y) [¥).
(30)

Replacing W by the free field, and taking a sequence
|¢) which approaches a plane wave leads to

(0. + »)(0, + m")F@@ — y; P)
= g"1AL % F(x — y; P)
where F(x — y; P) =
as previously defined.
The advantage of considering this special matrix
element is that it has a simple expansion in four-

dimensional spherical harmonics (in the Fuclidean
region),

31
(P| ®()®(y)|P) and zA[)’

F@E; P) = g Ci(cos O)F (),
where cos 6 = £P/(& *P?)} C.(cos 6) = Y, 0,(0) =
sin (I 4 1)8/ sin 6. (Note that the odd partial waves
vanish in the case of identical fields.)

The expansion given above converges in the largest
singularity for ellipse with foci at cos § = +1 in
the complex (cos 8) plane. This region can be deter-
mined by using the Jost-Lehmann-Dyson represen-
tation (2), which for the case when F(z, P) and
F(—z,P) have disjoint support in momentum space
can be written directly for the matrix element (after
taking out the vacuum intermediate state)

(32)

F(z, P) = fm &5 AP @ D)p(x, ). (33)

. . . . 2
Since p is an entire function of z, for fixed " not

positive, the expansion (32) converges (z* = —¢,
for ¢ Euclidean).
Now define
a d . I+ 21)
L’_(4)\d)\2+8d)\_m— X ,

~ ———

A= —2> (A > Ospacelike), (34)

2 P42
N, 6K()\) Yy M,, A\K’ 0‘;)\2 + t
4
x( —%f?) K =i AL, (35)

Equation (31) reduces to the following for partial
waves

LfF[ = gzN;F;. (36)

Two boundary conditions are readily obtained from
spectral requirements. Defining as f; the partial
wave matrix element minus the vacuum interme-
diate-state contribution

2 141
@n° mM?

one obtains from spectral conditions [for example by
using the Jost—-Lehmann Dyson representation (33)]
that f; goes to zero faster than A" as A — «. Here
we assume that m = 0 and hence the decrease is
actually exponential in spacelike directions. The
equation reduces asymptotically to the free one and
there are four solutions,

! even.

fo=F + -3 (1) Jt+1[m(>\)§ (37

1
I Il+1[m(>\)%]7 Kz+1[m()‘) I,
5o G LealmO], g sy K mO)!)

The solution that behaves like I-functions increase
exponentially for large N and must be discarded.
The behavior near the origin is

W@ 3\ eXp[ (26);14 W} :l

~3=3(1—(12+21)/31% (39)
™9 .

F;.’i) . (4) ~

We have no direct short-distance boundary condi-
tion.

In accordance with the inversion principles es-
tablished in the previous section, we invert with the
a-procedure in every order of perturbation theory:

F, = Zo F®™ ()", (40)
n - n 1 d - n
P =L = =R,
where
(n) A « (n~1)
lLha — (;é) Nze (42)
and
Li'g = [ NGO, MgV, (43a)
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G (W), (43b)

- = 3
Ln?gz = j; dk'k'gz(k’) amE

141
6.0, ¥) = § Gyt

+ Kina[mO ImA)e0 — M),

where X is the Euclidean distance and all integrations
are performed in the Euclidean region. The transla-
tional property is equivalent to the following set of
integral equations:

1+2
207

(K1 [m(k')*]I m[m(k)*] 6 —N)
(49

LEZ gy + o & o ')

142 d
1= 1["2“6)1_ g + O\)* an gz], (452)

— g ') + O @9

z+1[ 5‘(‘5\‘)‘{ g + W ar 9:] (45b)
For a g;, which is square-integrable at the origin,
these identities are fulfilled as one easily checks by
partial integration. Taking g to be J, of (42), one
has identities for Re {«) sufficiently negatwe Since
the point @ = 0 can be reached by analytic continua-
tion [all inversion in (45) are analytic for complex a
for all expression J, occurring in perturbation
theory] through complex e, this property does not
get lost.

The contact terms which according to the theorem
of the previous section only contributes up to the
Nth partial wave, are of the form

a.(g:) (K IM(R)*](?\)_*}

and behave for short distances like A¥“"®, Tt is
just for these terms that a partial integration gives
surface contributions which violate (45). An a-
regularization of g, changes only the coefficients
a:(g;) but not the integer power, and hence we have
confirmed in a more detailed and direct way that the
principles formulated in the previous section elimi-
nate those ambiguities.

We now discuss the convergence of the nonre-
normalizable perturbation series. It is sufficient to
take the case I = 0, since the treatment for other
values of ! is quite similar. To simplify the mathe-
matics, we shall also only consider the most singular
terms in the vector boson propagator and indicate
later how the more general case can be treated. With

these simplifications, the differential equations under_

consideration reduces to

K. BARDAKCI AND B. SCHROER

2 2
(47\;7-;- 8% - m’) F = G’%F" (463)
where
@ = 24 /4xM*

and the boundary condition

F+ 25 —%”a()"})—*l -0 (a6b)
for Iarge X,
The perturbation series (41) now simplifies to
F = ) F™@Qr (47a)
with
F* = fp.I; ( ) SO (47

where we have abbreviated the a-procedure in (41)
by f.p. (finite parts).

For our immediate purpose it is convenient to
forget about the boundary condition (46b) at A = e,
To this end we define the Green’s function

0 =5 [ v o (KalmOML IOV

= Km0 ILImO)g0v) dN (48)

so that

Li*g = L3*g + 0/om)LImO\ens  (49)

where ¢,.» is a (m-dependent) constant.
We consider now the problem (47) with L;* re-
placed by L;® As the zero-order input we take

F® = Lm0\, = (8/0m’)L[mO}].  (50)

Assuming for the moment that the so-obtained power
series F, and F, converge for small G, we obtain in
this way a two-parametric manifold of solutions,

F = CYF1 + 5F2» (51)

of the differential equation (46a) which fulfill the
same boundary condition at the origin as (47), but
in general not the condition (46b) at A\ — «. The
constant « and 8 must be so fixed that this boundary
condition at A = o is satisfied. To achieve this, we
define three further solutions to Eq. (46a),

{0}
2

roy = & [5’39) +@ [ ava,o,n N
(52)
‘F‘(x) %)?L.I.Ga f dA’G (A k’)dg;:g)\) ]
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and
Fid) = B(—N),
with
_ 2 LmYY
B® = — 55 “mo

dzE()\' ).

~-@ f dH, (N, N)

The Green’s functions Gy and H, are taken to be

, 1 3
Grd, X) = 2()\)\) om®
X AKmO)ILmO'] = Q=M o
x 1 3
Hy(\, N) = 4 WWY)? om®

X AHP [mOWPTImO)] — (v o).

The integral equations for the above functions are
the Volterra type, and therefore they can be iterated
to yield a convergent series in G* for any value of
. Further, any arbitrary solution satisfying the
boundary condition (46b) can be written in the form

F = Fy\) 4+ vF.(N) + 8F:(N), (54)

where y and 8 are constants which can depend on G*.
To get the correct solution these constants must be
adjusted to satisfy the boundary conditions at A=0.
These are implicitly defined by F, and F,. We now
match the solutions defined by (51) to the solution
defined by (54) (for convenience) at A = 1.

F(1) = FQ1), F/(1) = P/(n),
F"(l) — p"(l), Flll(l) - F'Ill(l).

This leads to four linear equations for the four un-
known parameters «, 8, v, and 4. Since the F,’s are
analytic functions of G° around G* = 0 at the point
A = 1, then a, 8, v, and & can be written as ratios of
analytic functions of G°. These constants will there-
fore be meromorphic functions of G?, and barring the
unlikely case of a pole at G* = 0, they will also have
a finite region of analyticity around G> = 0. This
clearly implies that the perturbation expansion for
the correct solution to (46a) converges for small-
enough . For a discussion of convergence for the
power series of F; and F, with the zero-order input
(50) and the Green’s function L;? (48) we refer to
the Appendix.

We could have taken a complete expansion of

1A%’ (\) into powers of A and products of powers
tlmes log . This complicates the details of the dis-
cussion, but does not effect the results.

(55)

We would like to point out that the principles of
the previous section which lead us to scale dependent
inversion of the Klein—-Gordon operator can also be
applied to the two-point function vacuum expecta-
tion values problem considered in I. In this way we
would obtain a finite expression for the “‘unre-
normalized” two-point function. For large distances,
such an unrenormalized two-point function contains,
in perturbation theory, besides terms proportional to
K,[m(\)¥/(\)? also a term proportional to

(3/0m> K, [mN N

(where the constant in front is related to the “mass
renormalization” &m®). The presence of this term
violates the ¢~*’* asymptotic fall-off property for the
two-point function and therefore the mass renormaliza-
tion 1s a necessity. The discussed inversion of the
Klein—~Gordon operator therefore has to be renormal-
ized in every order of perturbation theory for those
functions which warrant renormalization, i.e., the
two-point and the three-point function.

It should be stressed that our perturbation-theo-
retical approach of the two-point matrix element
does not, carry over directly to the S-matrix. The
elastic (forward) scattering amplitude for the par-
ticular matrix element (P| &(z)®(y) |P) can be ob-
tained in an analogous fashion to (6), except that
the limit has to be taken for large timelike separa-
tions. However, the obtained perturbation series
for unrenormalized interactions and these limits
are not generally interchangeable.

A second problem is the computation of the matrix
element in the physical points from the computation
of the Euclidean partial waves (32). The statement
that F can be analytically continued into the physi-
cal points does not necessarily imply that the spheri-
cal decomposition can be continued. It turns out
that a continuous decomposition of F with respect
to basis functions which form a unitary representa-
tion of the homogeneous Lorentz group takes over
the role of (32) in the physical points. The connection
between the Euclidean F; and the “Lorentz” F,
(A continuous) will be discussed elsewhere.

4. GENERALIZATION TO CI APPROXIMATIONS
OF WIGHTMAN FUNCTIONS

The perturbation theory, which we discussed in
detail for the ladder approximation of the two-point
matrix element, can be carried over to certain ap-
proximations for higher point expectations values
and matrix elements. Consider for example the n-
point function

Wiz, «+ ) = <0| (I’(xl) oo B(z,) !O) (56)
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3 4
+ + FUPYPE
1 2 1 2 1 2
3 4 3 4
with zero-order 3 4
input: + +
| 2 \ 2 ] 2

Fia. 1. The graphs of pure CI type for the four-point Wight-
man function.

Taking the same field equation for & as previously,
we obtain for spacelike separated z, « -+ @,

(0., + m(0., + MW,
= gX0| W (x) W, (%) 0"®(2,)8" ®(22) B(zs) - - - B(zn) |0);
(67)

neglecting all intermediate states but the vacuum
between the W’s and the &’s leads to the approximate
equation

(0., + m)(0O., + mOW,

= g 0] Wi@)W,(z2) 10)3:,0.,W...  (58)

A consideration analogous to the one in the second
section shows that the same principles which elimi-
nate the ambiguities (in the nonrenormalizable case
up to a scale parameter) of the inversion in the case
of the two-point matrix element also serve this pur-
pose for (58). So for the case of a renormalizable
interaction we obtain

W;m-”)(xl . x")

= 3 [[ K@ — ek, — aphias — )

i<y

X Wiz, +o- b -e- 2l -+ z,) dol dr) (59)

where
K = mi=" @)K [m@)],

and k(%) is the two-point function of the field which
is coupled to ®. The upper index denotes the pertur-
bation-theoretical order in g*. Here for convenience
the inversion is written down in the Euclidean region
of the Wightman functions.

For the nonrenormalizable case like (58) we first
reduce the inversion problem to a one-dimensional
one by decomposing the Euclidean Wightman func-
tion W, with respect to four-dimensional spherical

harmonics:

Wn(x, crt x: M x: cot xn) = Z ‘yl,mo.m,(OOV 011¢)
X Wn,ii((xf - x;)z, xl R xn)l.mg.m;' (60)

One easily checks that in the W, ;;(--)im.m, the
problem separates. We again multiply the W,-
boson propagator by (A/£)® and invert the partial-
wave differential operator as in the previous section.
For the problem of continuing back into the Minkow-
ski points the same remarks as made at the end of
the previous section apply.

The expectation values which can be obtained by
the iterative inversion of Klein—Gordon operators
are indiecated in Fig. 1 for the special case of the four-
point expectation values. We call them CI (current
inversion) graphs. There are other graphs which
besides this inversion also involve the evaluation of
two or more collapsing coordinates in the expecta-
tion value of the currents [in a way which cannot
be factorized like the right-hand side of (57) in the
vacuum intermediate-state approximation]. This
problem is related to the problem of a careful defini-
tion of the nonlinear terms in the field equations as a
“local function” of the fields involved. This impor-
tant aspect of a finite (and cutoff-independent)
formulation of the renormalization procedure has
not, even been considered in renormalizable theories
in a systematic fashion. Examples of CD (current
definition) graphs are given in Fig. 2. I't is conceivable
that the scale ambiguity in the nonrencrmalizable
CI graphs compensate with the scale ambiguity
arising from the CD graphs. One would be inclined
to conjecture that such a compensation (which is
analogous to Ward’s identity in quantum electro-
dynamics) is most likely to occur in electrodynamics
of higher-spin particles. However, a discussion of the
problems related with the CD graphs is very com-
plicated and completely outside the scope of this
paper.

It is worthwhile to mention that our computa-
tional procedure for the CI graphs in nonrenormal-
izable theories can be expressed in a very compact
form by using a parameter-dependent generalized
free field” for the W-boson field operator. The two-

Fic. 2. Example of a CD graph.

20 O, W. Greenberg, Ann. Phys. (N. Y.) 16, 158 (1961).
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point function of this generalized free field is taken
to be (A/z°)* times the free-field expression for the
W-two-point function. The generalized free-field
nature of W can be taken care of by writing down a
(formally nonlocal) modified expression for the free
part of the W-Lagrangian. In any step of the com-
putation we have to take of course the finite part
for a — 0.

CONCLUDING REMARKS AND
ACKNOWLEDGMENTS

Although we have succeeded in finding perturba-
tion-theoretical rules for nonrenormalizable couplings
in certain approximations, the appearing of a scale
ambiguity is a disconcerting feature. Only theories
in which this scale parameter compensates by taking
into consideration other terms (the CD graphs) can
be considered as satisfactory.

It is amusing to point out that the ladder approxi-
mation of (P| ®(z)®(y) |P) (Sec. 3) leads to an
absorptive part of the forward scattering amplitude
which is free of the scaling parameter A. This was
pointed out first by M. B. Halpern.** It is easy to
check that our perturbation-theoretical series (40)
indeed leads to a power series for (P| j(¢)i(—k) |P)
(g, k£ on mass shell) which is A-independent and
converges for arbitrary size of the coupling constant.
The computation of this absorptive part is very
similar to the two-point function problem discussed
in our previous paper I.

After completion of this paper we received a pre-
print of a paper by W. Giittinger ef al.”® In this paper
an analogous treatment of nonrenormalizable Bethe—
Salpeter ladders is given. We want to emphasize,
that our criticism on the analogy to singular poten-
tial theory does not apply to this paper, because the
authors use a potential theoretical language only
formally, but do not take it seriously as far as their
computational procedure is concerned.”
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Institute for Advanced Study.

APPENDIX

Consider first a second-order differential equation
with m* = 0,

21 M. B. Halpern, “S-Matrix Theory and Higher-Order
Corrections to Weak Interaction” (Thesis, Harvard Univer-
sity, 1964), Part I1I.

2 'W. Giittinger, R. Penzl, and E. Pfaffelhuber, “Peratisa-
tion of Unrenormalizable Field Theories,” University of
Miinchen preprint, 1964.

23 The treatment of singular potentials amounts to the
construction of self-adjoint extensions for symmetric Hamil-
tonians. See K. Meetz, “Singular Potentials in Non-Rela-
tivistic Quantum Mechanies,” preprint, Hamburg, 1964.

(s—+4x ) - —;]T;F. (A1)
In this case the operator L;" reduces to
) (x)*} " dv
-5 [ G - o ac a2

For a > 2, the perturbation series corresponding
to F, of Sec. 3 with the input F{” = 1 [corresponding
to formula (50)] is

1+ 3 -eer(L) = 1
£ /" ,
+ ,;(a—l)(a—2)- e — m)a —n — 1)
(A3)

This series obviously converges. For « = 2, the
finite-part operation in T"(\®)™* becomes active,
and we obtain the converging series

14+ ¢\7'(1 = log\) + (1 — log )

> ev{h-LG-5) - sk
X "2_:29 A <12 2 \gz ~ 32 n — 1)2 2/

In this formula, as in the following ones, we have
chosen the scale parameter A = 1 for convenience.

The perturbation series for the fourth-order equa-
tion

d2 g2

(8 + 4A d)\) =\ F,
with the zero-order input F{” = 1and F{” = X, only
involves even powers of T, and can be worked out in
an analogous fashion. Therefore the functions F,
and F, [Eq. (51)] which correspond to the nonre-
normalizable model (A4) have a converging per-
turbation series.

For a discussion of the finite-mass case

(A4)

2 2 2
( +4xd 2>F=£;F (A5)
we decompose F into a double power series
FQ) = 20 F: ;@) (m?). (A6)

This gives rise to the system of differential equations,

2 2
(8—-{—4)\ d—) Fi, — (8—-1—4)\ d )F,-,,-_l

Fiis= A7
+ F., < (A7)

The inversion of

(8—+4)\d—)
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can be obtained by taking the second-order Green’s
function corresponding to (48),
Litg = § [ oot (KilmOOL Im))
o g =73 J YIRS [m
— (A e M)}g\) av

for m* = 0. This expression is identical to the opera-
tor 7' in (A2). Hence we have to show that the sys-
tem of equations

F;‘,' —— 2TF,",‘_1 + TZF;,f_g = g’2 i]; F,'_;',-, (AS)

o

with the zero-order input [Eq. (50)]

_ l)"____...%" _
F""“"(et TG D!

and . (l)} A
0§32 .74 .7'(,7"{"1)‘,

leads to a converging double power series (A8) F,
and F,.

First take Im « # 0, Re arbitrary. From the
structure of the system (A8) and the input (A9)
follows that F;; has the form

Ey—~satk
Fy= 2 a7t
k

(A9)

(A10)

where the sum over & involves finitely-many positive
values. This is evident, since the action of T on an
expression of the form A™*** with Im 8 = 0 gives

—B+k T i
H ey Ty e M
Introducing the norm
NEF.)) = ; la; ] (A12)

we see that

x“u-}l‘&l

=Z k.
TPy = 3 20 o T = DGa =k =D

and hence
-;_r [afil
NIFD) = Y G T = [Ga =k =1
< C- Y |akil (A13)
where
i I
O P e F (D@ et (T = T’

Therefore the mapping T is a bounded operator in
the norm (A12). This leads to a convergence of the
power series (A6) at the value A = 1 for small ¢°
and m’.

In the same fashion we can show that the first
three derivatives of F' converge for small parameter
¢° and m® at A = 1. The differential equation (A5)
itself then takes care of the rest of the proof. It can
be seen by a more careful discussion that the re-
striction to small m* can be removed. The restriction
to small values of ¢°, however, is connected with
the appearance of bound states and cannot be so
easily overcome.

A similar consideration holds for the differential
equation (46a), if we replace the 1/X on the right-
hand side by 1/A°. In both cases the treatment of
real o turns out to be much more complicated. The
reason is that the finite-positive operation brings in
logarithmic terms analogous to the zero-rest-mass
case (A4). For m > 0 an explicit computation is,
however, unfeasible. Estimates on the iteration of
the system (A8) turn out to be very involved and
we have not found a proof worthy of presentation.
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A determinant and its cofactors are expanded in terms of the eyclic products of its elements. With
the aid of this expansion, an implicit equation for the eigenvalue and an explicit equation for ampli-
tudes of the corresponding eigenfunction are obtained, respectively, in terms of a ratio of two simple
series expansions. Comparisons with Feenberg’s perturbation formula and with Sasakawa’s perturba-

tion method are also discussed.

1. INTRODUCTION

HE secular equation is known as the conse-
quence of solving the eigenvalue problem of an
operator in terms of a complete set of basic state
functions. In a given space, the eigenvalue E, and
eigenfunction ¥, of an operator 3¢ are related by

(‘PK: - Em)‘Ila: = (1)

In this space, if there exists a convenient complete
set, of orthonormal functions u;, the eigenfunction ¥,
may be expressed by the following expansion:

\I"u = Z Quils.
7

To simplify our discussion, we shall use a finite set
of u;, say j = 1,2, - -+ , n. There would be no loss of
generality as long as we always keep in mind that n
can be any number, even n — «. Combining Eqs.
(1) and (2) and taking 7 = w as the chosen state, we
get

E (Has

where H,; = (u:| 3 |u;). This system of » homo-
geneous linear equations will have a nonvanishing
solution if and only if the determinant formed from
the coefficient of unknowns a;; vanishes. This condi-
tion is known as the secular equation:

lHk:' - E; 6;,,'[ = 0. (4)
E; denotes one of the n solutions of the secular equa-~
tion such that, for a given ¢,

lim E;— H,
Hig—0
That is to say, if each of the off-diagonal elements H;
is allowed to decrease indefinitely to zero, the solu-
tion E; will take H,; as a limit. Thus E; may be

* Work performed under the auspices of the U. 8. Atomic
Energy Commission,

@

— E; Bki)a.'i = 0, k 1’ 2’ e (3)

’n3

forall ;s 1. (5)
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called the solution associated with matrix element
H,,.

To obtain the amplitude a,; corresponding to E;,
we choose n — 1 equations with k 5% 7 out of Eq. (3).
By dividing each equation by a,;, we have a system
of n — 1 inhomogeneous linear equations inn — 1

unknowns.
E (Ht:i — E; 5&:)(2") = "Hu;
k=1,2,---,s—1,i+1,---,n.  (6)

According to Cramer’s rule' the solution of these
equations is given by

a”/a“ — _MHU)/MN’ (7)

where M** is the complementary minor correspond-
ing to element (4, ) = H;, — E; of the determinant
in Eq. (3), and M** ‘" is a determinant obtained from
M* by replacing the j-column (k, j) = H,; with
element (%, ©). However, the normalized value of a a,;
may be obtained using the normalizing condition
> % la:;)* = 1. We may note that

MU = (—)VII = D

and

forall j # ¢,

= (_I)HiM”: (8)

where M*' and D'/ are, respectively, the comple-
mentary minor and cofactor corresponding to ele-
ment (i, j).

The formal solutions of E; and a;; in the form of an
infinite series expansion can be derived from Eq. (3)
by the method of successive order of approximation,
It is generally known as the Brillouin>~Wigner®

forall 7 and j,

1 H, Margenau, The Mathematics of Physics and Chemistry
(D Van Nostrand Company, Inc., New York, 1946), Chap.

’L Brillouin, J. Phys. Radium 3, 373 (1932).
+ E. P. Wigner, Anz. Ungr. Akad. Wiss, Math. Naturw.
53, 475 (1935).
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perturbation expansion. Feenberg® has transformed
these solutions into a form in which no repetitive
matrix elements appear in a term of given order. The
Feenberg perturbation formula has also been de-
rived by Feshbach® using the method of successive
elimination of a.; from Eq. (3). Recently, using the
dispersion relation representation of a secular equa-
tion, Sasakawa® has proposed a new method for
solving eigenvalue problems. We shall see that his
Green’s function expansion is closely related to the
eyclic product expansion given in this note.

In this paper, we shall adopt a different method of
approach. Instead of using Eq. (3), the solution of
E; and a;; will be derived independently from Egs.
(4) and (7), respectively. In Sec. II, a method to
expand a determinant and its minors is developed.
With the aid of these expansions, solutions of E; and
a.;/a;; are given in Secs. IIT and IV, respectively.
An application to the perturbation problem will be
discussed in Sec. V. Finally, in Sec. VI, a brief dis-
cussion is given on the equivalence between Feen-
berg’s formula and the result obtained by the present
method. A comparison with Sasakawa’s method is
also briefly discussed.

1. SERIES EXPANSION OF A DETERMINANT

For convenience, an nth order determinant is
simply defined by a sum of n! terms, each of which
is & product of n elements arranged as follows:

D, = 22 (=D, )2, b)) --- (1, b). (9

The n elements in each term are arranged in an order
according to the natural order of the first indices
{the row indices), whereas the arrangement of
the second indices (the column indices) is one of
the n! permutations of integers 1, 2, - - - , n. In order
to allow the algebraic sign of each term to be inde-
pendent of particular rearrangement of the elements
within the same term, the integer « is defined as the
number of interchanges required for the sequence of
the second indices to restore the same arrangement
of the first indices which, in Eq. (9), is the natural
order of n integers.

It is known that there is an intimate connection be-
tween permutations and the determinant. As in the
case of permutations,” the product of n elements in
each term of Eq. (9) may be broken up into cyclic
products, each of which can be defined as follows.
If we have 8 elements and if their indices can be

¢ B. Feenberg, Phys. Rev. 74, 206 (1948).

5 H, Feshbach, Phys. Rev. 74, 1548 (1948).

¢ T, Sasakawa, J. Math. Phys. 4, 970 (1963); 5, 379 (1964).

7 J. 8. Griffith, The Theory of Transition-Metal Ions (Cam-
bridge University Press, Cambridge, England, 1961), p. 24,

arranged in a eyclic order, a cyclic product of these 8
elements is written as

Cp = (—=1)*7(igkl - -+ st), (10)

where (i]kl s St) = ('i; ])(j) k)(kz - (8) t)(t) 1‘)'
Now a = # — 1, the number of elements minus one.
After a proper rearrangement of the relative order
of elements, each term in D, can be expressed as a
product of Cj. Therefore,

Du = Z Cﬁzcﬁ: b Cg,, (11)
8

with D ; 8; = n. We should note that no two Cs in
the same term have a label in common. The explicit
form of this expansion depends on the type of C,
chosen as principal expansion parameters. Perhaps
the simplest and most interesting form is the expan-
sion of D, according to the product of the diagonal
elements C7, the produet of m diagonal elements. It
follows that

D, =Cr+ 2,C77°C. + 22,07,

+ 25, CTHC + C3) + X2, CT%(Cs + CoCy)

+ 2, 07Cs + CC + Co +C) + -+

+ 2, OV (Cay + CosCa + <+ + C3)

+ 2, O (CarirHCormsCat o+ -+ CCD 4 -

+ E:» (Cat-CosCat- - _+Ogu—-(—nnxcgtzn-xﬂ—mx)’
(12)

where D, denotes the summation over all possible
nonequivalent cyclic permutations.® For given type

22 C3:CRy -+ CFy,

the total number of terms is given by®

T - D =
IT te:)™m I1 G7md
’ : (13)

The first factor on the left-hand side represents the
number of different possible selections of n distinct
objects divided into » different classes. For any class
1, it consists of m; groups, each of which has an
identical number of objects ;. The second factor
represents the total number of different arrange-
ments of objects due to the permutation of objects
in each eyclic group.

8 For example, the permutations of (abc) = (bea) = (cab)
sﬁrg s(%i‘(li)to be equivalent, but not of (abc) % (ach). See also

¢® Consequently, Y.a, [II/(B;mim !)]™* = 1, since the total
number of terms is equal to n!.



SERIES EXPANSION

Expanding Eq. (12) to the 4th order explicitly, we
get

p.-Tlo-% [@ Tw]+|ew 1T 0]
- 5 {@m — e 11 b+ an

By dividing the whole equation by d, = H’,? @)
assuming that d, 0, the following form is obtained:

o e @Gk
D,=7=12, [1 o0 T HO®
_ G~ G

OOmO T ]

We shall call D, the specific determinant, which will
be used in the rest of this note because of its con-
venient form.

A similar method can be used to expand M**
and its associated minors and cofactors. However,
we may find it easier to generate the expansion of
M*” from the expansion of M*, the principal
minor. The expansion of M*' is simple because its
lIabeling structure is the same as D, except that the
ith row and 7th column are missing. Let d;; =
112 G) = 0, it follows from Eq. (15) that

Mc R, G
FrialpY [1 6 T oo ~ ]

Ed)

+

(15)

M= + o

(16)

As stated in the last section, M***” and M differ
merely by one column. Therefore, the products of
diagonal elements of both differ only by a factor
disciy/dii = (j, ©)/(j). The expansion of

M::::(i)(= Mii(i)/d“)

can be generated from M by dividing Eq. (16) into
two parts. Those terms which do not have element
(§) are multiplied by a factor (4, 7)/(5); and for the
others, only those elements (z, j) are replaced by
(z, ). Writing explicitly, we have

M = ;f {(’(];) [1 - (k(lgg) k) 4+ ]
o[ ot ] e
or

4. G Bk, D, (z])) (;)(g', Ok, DG ) _ } a8)
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With the aid of Eq. (8), the expansion of the specific
minor Mii and the specific cofactor D} can be ob-
tained immediately.

Finally, to prepare for the discussion of the next
section, we show here the result of the expansion of
D, in terms of a particular index . To do this, Eq.
(15) is divided into two parts, with the element (i)
appearing in only one of them. Thus we write

Cow G, G
D.= 2. [1 & T HR ]

G, _GB__GID G,
+ Z[ o Too® ™ oomn ]

(19)

It is interesting to identify the meaning of these two
sums and also to show that they agree with a well-
known theorem. The first summation is identical
with M in Eq. (16) and the second one can be
shown, with Eq. (18), to be

E 1:,2 Z‘/Iu(l)‘
Therefore,
B Y&kl (7’? .7) n(r)
D, = M — M
Z O]
or
D, = > () D".

This is the theorem, usually called Laplace develop-
ment, for the expansion of a determinant in terms
of its cofactors.

III. IMPLICIT SOLUTION FOR EIGENVALUE
For any eigenvalue E,; associated with matrix
element H,;, Eq. (4) is expanded in a form given by

Eq. (19). After a simple algebraic rearrangement,
the implieit solution of E; is given by

Ei = Hu - Ri(E;); (20)
where
R(E) = ()
G) Gk, | G — GDGD
-z [(f) o® T oo ]
Gk, GE) }
X {Z [1 o® T omo ] - @

R is a function of E,, since (k) = H,, — E; forall k.
In principle, E; can be solved by the iteration
method™® using Eq. (21). ¥or example, when H;; #

10 P, M. Morse and H. Feshbach, Method of Theoretical

Physics (McGraw-Hill Book Company, Inc, New York,
1953), Vol. I1, Chap. 9.
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H." for all j # 4, we may start with B; = 0 as
zero-iteration, i.e., ,B; = H,;. For the first itera-
tion, (,E; is obtained by substituting ,E; in R;
of Eq. (20). Continuing with this process, one may
calculate an eigenvalue with any desired degree of
accuracy. This method is equivalent to the iteration
method which has been used directly for a deter-
minant without series expansion.'” In fact, the ad-
vantage of Eq. (21) is that it can be used for a dif-
ferent order of approximation calculation. Higher-
order terms of both the numerator and the denom-
inator may be neglected when a complete expansion
is not required. If the first-order approximation is
defined by neglecting R,, namely, E{® = H,,, then
Eq. (21), as written, represents the 4th-order ap-
proximation. For a pth iteration and gth-order
approximation, Eq. (15) is written as

(,)Ega) = H; — (p)RSG)[(y—nEEG)]- (22)
As we shall see in Sec. VI, Eq. (20) is equivalent to
Feenberg’s eigenvalue expansion. Hence, the condi-
tion of convergence for Feenberg’s expansion which
has been discussed in some detail in Ref. 10 can be
applied to Eq. (20).

An alternative form of Eq. (21) may be very use-
ful, especially if R, is small, as in the perturbation
problem. By eliminating E; in Eq. (21) by means of
Eq. (20), a solution of R, in terms of itself is obtained:

IR=ANC) (k)
R(R) = ;[{; J Tk T ]

X{"?.-l» [1 -t "']}_1’ (23)

where {j, i} = H;; — H:i + R; = (j) = H;; — E..
Now R, can be calculated by iteration of itself.

At this moment, we may remind ourselves that,
besides using the specific determinant expansion, R;
can be expressed also in terms of the original deter-
minant expansion in the form of Eq. (14). Multiply-

ing both the numerator and denominator of Eaq.
(21) by d.;, we have

1 'When Hy = H;; = H;i = +++ = Hyy, a crude
estimated value of E;(® may be obtained by means of the
second-order approximation of Eq. (23). After separating the
degenerate part from the nondegenerate part, one of the solu-
tions of the quadratic equation

Lo (fa) | »e? (ik)
R; = \%s)
;§¢ R, T h‘izi. Hu —His + (B =0)

may be used for the zero iteration. Naturallﬁ, consistency or
O‘ﬂ}f{ means should be used to justify which solution is the
right one,

12 See, for example, B. L. Cross and P. C. Crawford, J.
Chem. Phys. 5, 621 (1937).

Ro=S (o TTw-w T+ +a]

-1
n—1
(1) ’

i
n—1 n—2 n—3
X {E»[H(ﬁ -GR IO+ +
i i #ifk

(24)
where A%, = the last sum of Eq. (12) and Az}, =M
with all (§) = 0. If n is finite and (j) = O for all
§ # 1 (a hypothetical case),

R, = A'('o)/A,(‘::)- (25)
IV. EXPLICIT SOLUTION FOR AMPLITUDES
Substituting Egs. (16) and (18) into Eq. (7) gives

TG G Rk
" %[@ 610

4 G B DA D — G, ), DEK) _ :I

(NE)D
B[~ e iy T
(26)

T O®
This ratio is expressed in terms of E,. Similarly to
Eq. (23), it also can be expressed in terms of E; by

substituting (j) = {j, ¢},
o]

@i . _"Z_z li(.” 2) — (.7’ k)(k’ 7")
"Lig el G, ik, ¢
Sh-® ]
NS [ - g ) e
Therefore, the value of a,;/a;; can be calculated when
either E; or R, is given. In both Egs. (26) and (27)
we note that the denominator is the same for every
j value. In practice it may be set equal to a constant
or simply unity to simplify the calculation, because,
eventually, every value of a;; will be subjected to
normalization.
If both the numerator and denominator of Eq.
(26) are multiplied by d;;, then a.;/a,; is expressed
in a form similar to that given in Eq. (24).

(27

kD _ |
OO0

i i

V. PERTURBATION PROBLEM

In a perturbation problem, the operator usually
consists of two parts, namely,

3 = 3¢, + 3¢/, (28)

where 3¢, and 3¢’ are called the unperturbed and the
perturbed operators, respectively. For convenience,
we assume that 3Cou; = E,u;. Now we have
(| 3¢ |u;) = 3 + (Eow — E.)byy, where Hf; =
{us| 3¢’ |u;), the matrix elements of the perturbed
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operator. Using either (j) = E,; + HY;

- E.‘, or {j, i} = Eof - Eo; + H:,

- H:¢ + R,', E( and a“'

are solved with the aid of either Egs. (21) and (26) or Egs. (23) and (27), respectively. In order to make
an interesting comparison with the Rayleigh-Schrodinger perturbation theory, we write down the results

from Egs. (23) and (27) up to third order only:

4 4
E:a) = E : H.- — { HiiHit'
os + ¢ kg Eoi — By + H;i -

ket§

Hi + R,

- k; (EOi - Eoc + H;i -

ki

_ HyHLH, }
Hl’i + Ri)(Eok - Eo.’ + Hl:k - H:’i + Ri)

’ Hl -1
1 _ JkLL ks
X { o o= o ¥ By — B ¥ BB — B ¥ Ha ~ o T R.—)} ;@)
and
a® = l:_‘}#r][__ Hi;
Y M:: (EOi - Eoi + H:'i - H:;’ + Ra)
H,HY, ]
Wy B ¥ B~ W T B~ Bo t B~ H, 4 E))
No attempt will be made in this paper to discuss the |:1 d —a)/@ =25 |7 31
difference between these results and those obtained X1-1 (@ —-v)y/a-»ov)d - @1)

by Rayleigh-Schrodinger’s perturbation.
VI. DISCUSSION

It has been pointed out by Feenberg in Ref. 4
that his eigenvalue formula is simply a convenient
way of writing the secular equation. This can be
seen more instructively by following Feshbach’s
derivation. Therefore, there is no doubt that the
Feenberg expansion and the result given by Eq. (20)
are equivalent, although their forms look quite dif-
ferent. We shall demonstrate that Feenberg’s ex-
pansion can be obtained directly from Eq. (21). We
note that the product of matrix elements in each
term in Feenberg’s expansion is expressed only in
terms of single cyclic products (¢jk ---), whereas,
in Eq. (20), compound cyclic products, such as
(4k)(m - --) are also used. For a fraction like E;,
each compound product can be transformed into
terms of single cyclic products by a method of suc-
cessive dividion, dividing both the numerator and
the denominator by a proper factor. This method is
best illustrated by the following simple example:

al —a) +b(l —b)+c¢c

1—-4d
_ b(l —b)+ec a\!
R p— <l—a)
_ b+ /(1 —b)
—a+1_(a/_b/)/(1__b/)

Expanding R; of Eq. (21) to the 5th order, we have

)

k.= E [(:)

__ (ighlm) — (ik)(Im) — @(kim) ]
() () (@)(m)

n~1

X {Z,, [1 —
P’

The numerator of B, can be transformed into

R M ()]
Ne= (E @)

R M () o _(Flm)
x (1= 2 0+ T s =)
5 G0 N _ 5 (Am) .

( @(k))(l & m T )

. (kD) (iflelm)
+ 2 0 2 DO
where D % = > (j # 1), and
S* = 3 A4,k # ji, L #~ kji, m = lkji), ete.

$ikim

 (Gklm) — GRam) .\
DEDm T ]}

(32)

+ -0, (33)

Using the method of successive division and some
formal expansions, such as

2, (k) = ;* (k) -+ Zk:l* &)+ -, (B
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Eq. (30) can be transformed into a repeated fractional expansion similar to that given in Eq. (31).
With a further transposition of the diagonal elements, the final form is given by

(i) + S rm) &
('i]k) + Z* iikim [_(m) - ”]l‘iklm
i1kl [—-(l) _ « (Am) + ]
('ij) + Z* ifklim (m) _ *t Jiikl
o + T Mt
~) - S —— e m o
skl __(l) _ Z* (lm) + .-
R, = — E* ifkim —(m) - “lidk (35)
i G + (jklm) + - -
() + Tr e i
$5kl —(l) _ E* (lm) + s o.
-6 - = Sl o)
ik (kl) + Z* (klm) + e
R e
$ikl __(l) — Z* (lm) + tot
L it —(m) — <+ i+
This can also be obtained from Eq. (3) by Feshbach’ method. Let K;j;... = [ ..., the following simple
form is obtained:
G + Tor WL
> * 17 17
D Ko
) ij Kii .
or
@ Gk (ijk1) ]
* * * cen
[Z 2 Rk T 2 KoKk T (36)
Similarily, K;;, the denominator of Eq. (35), can By a similar argument, it can also be demonstrated

be expanded in terms of other K;;...’s:

K= _[() + 2ox ot k). p oL _GkD

ik uk ikl ukKukl

ro

@37

By substituting Eq. (36) into Eq. (20), the Feen-
berg’s expansion is obtained:

—— e * L Sntedt &3
E;=H.+ Z:. A
* ¥ Rl Ll 24 .
* Z”‘ — &) (B — e) + ! (38)
with K, ... = (E'; — éijxe..). The expansion of ;;

given by Feenberg can also be shown to be the result
of Eq. (37):

Hikai
E; — e
Hichleli
— en)(E; —

&; = Hy; + Z*

+Z:*

$ikl

+ - (39)

éiikt)

that the equation for the amplitudes given by Feen-
berg and Eq. (26) are equivalent.

We would like to point out that Sasakawa's
Green’s function expansion has generated the same
expansions given by Eqs. (15)-(17). However, owing
to the nature of the iteration method, his elegant
work did not make extensive use of the permutation
symmetry of the expansion. It is obvious that the
Sasakawa dispersion relation may be obtained from
either Eq. (14) or Eq. (15). To demonstrate this,
we use the following identity of r matrix ele-

ments H,;,
@ ]
H;; — Hy

for the r-order term, if H;; # H,, for all j # k. [We
note that Eq. (40) is a (r — 1)-degree polynomial
equation in E; with at least r distinct solutions
H.., H;;, -+ ]° If we take the 3rd-order term as an

18 The author thanks Dr. George Trigg for this comment.

r—1

1= 5[

1 i

(40)
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example, we use

. @)
(Hii - Hii)(Hkk - Hil')
(k)(2)
+ (Hkk - H:‘:‘)(Hh' - H:'l')
. Lo @

(Hi — HW(H;; — Hu)'

Substituting Eq. (41) in the 3rd-order term of Eq.
(15) with Sasakawa’s notation w; = H;; and g,;;, =
D3 (ijk), we have

(k)  _ <
2o H0m = =

Y
=25

(k) _ <
P (@G)Kk) &t (w;
Z E Giin

iAL k> (‘\’i - wi)(wk - wi)
3

OIQ)

— ) — w)

(42)

In spite of its simplicity, the result of the present
paper represents a more general form for the solu-
tions of a secular equation and its associated eigen-
functions. Its application to  practical problems
should have a wider validity. The advantage of E;
and a,;/a;; expressed in the form of a ratio makes it
possible for them to work even in some limiting
cases,

VII. EXAMPLE

In this section, two simple examples selected from
Sasakawa’s first paper (S-I) will be used to demon-
strate the practical application of the eigenvalue
formulas given in this note. However, we must
realize that the degree of usefulness of different
methods should not be justified only by few examples.
For a particular problem, one method may have
certain advantages over the others, especially when
approximation is used.

Ezxample 1: The Ground-State Energy of Mathieu
Equation. The matrix elements of the Mathieu equa-
tion are all zero except

Hi =n®+ 3s,
Hy, = Hy = (8)7%,
Hiiva = Hipp = 3s,
It follows that any cyclic product with more than

two indices (elements) vanishes. Now Eq. (21) or (23)
takes the simple form

(43)
forall ¢ =0.

C e (G e, GGDm)
B = 25 [ O~ 0B0 T HROmO ]
= [, (k) @m }

X {Z [1 o T OO ] . @)

For ground state ¢ = 0, Eq. (44) can be written as

02
B =0

> [ -

¥0,2

kD(m) ]
®HO T BOmO

X{E [1 (%2) ]
- & 2 [1 et }}

Dividing both the numerator and the denominator
by the sum in the denominator and continuing this

process of reduction, Eq. (44) can be transformed
into a infinite continued fraction as

B = 02/
P /@)
| @)/[(96]

1 —

It is interesting to see that the elements with odd
number disappear if a finite number of fractions are
used. However, we must note that it is not neces-
sarily true when Eq. (44) is used directly. For s = 4,
Eq. (45) becomes

By — 2/(2° + Ry)
S VICES AT A
| _ & + B’ + )]

1 — 1/[(6* + Ro)(8° + Ry’
with an approximation up to n = 8. The radius of
convergence of Ry, AR, can be estimated by calculat-
ing how large a correction would be if the next-
higher-order number were included. Therefore,
AR/Ry ~ £1/[(6°+Ro)(8*+Ro)(8*+R,)(10°+Ry)]

~ 47 X 1075, 47
Now R, can be solved by iteration method as de-
seribed in Sec. III. The energy can be obtained by
E, = 2 — R,. Starting with ,R, = 0, the results
of E, corresponding to each successive iteration are
tabulated as follows, together with the results ob-
tained previously by other methods.

(45)

(46)

1)
Brillouin 2) 3)
Wigner (Refs. Feenberg Sasakawa (4)

Method 6 and 10) (Ref. 6) (Ref. 6) Eq. (46)

2 0  2.00000 2.00000  2.000000 2.000000000
g8 1 1.00000 1.268 1.549077 1.492049464
<] g 2 1.77778 1.55051  1.544742 1.550286204
g5 3 1.15407 1.54429  1.544704 1.544296736
_g g 4 1.54487  1.544703 1.544920092
w5 1.544855297
°3F 6 1.544862031
g8 7 1.544861331
5 8 1.544861404

9 1.544861396

possible
error -40.000000035
exact
solution 1.54486 (Ref. 10)
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It is not surprising that the result obtained by
method (4) agrees perfectly with the exact solution,
because Eq. (46) is equivalent to the continued frac-
tion formula which has been used to obtain the
exact solution (see pp. 564 and 1018 of Ref. 10).
Although a small discrepancy is found between the
results of method (3) and (4), yet, mathematically,
there is no reason to believe that the dispersion rela-
tion formula and Eq. (20) are not equivalent for the
nondegenerate case,

Example 2: The Nilsson’s Problem of the Degener-
ate Case. Now we take the example V.4 from S-I
to show that Eq. (21) or (23) can also be used directly
for the degenerate case. The matrix elements of
this 6 X 6 secular equation are given by

H, =Hy, = Hy =0, Hy=H; =Hep=—1
H,=H, = _'(30)—%; H,; = Hy, = _2(3)%;
Hy = Hyy = _<2)%, (48)

with all others equal to zero. By direct substitution

in Eq. (21) for ¢ = 1, we have
(9 _ (905 _ (19@6) | (14256
g =W _ @AG) @HE)E) BR)E)3)6)
' L _ @) _ @9 (@50
@G @O " AEE)E)
= %Ei)) (49)

Similarly we have

R, =30/(—-1+R,), R,=230/0+R),
R; = 12/(_1 + Rz); Ry = 12/(1 + Rs); (50)
R; = 2/(“1 +R3), R = 2/(1 +Rs)-

Now the only problem left is to solve the six simple
quadratic equations. Although there are totally
twelve solutions of R, obtainable from Eg. (50),
yet, when they are substituted in the energy equation
E;, = H,; — R, only six value of E, are obtained.
They are

E1=5, E2=3, E3=1,
Eg, = —6, E5 = _4:, Es = —2,

which agree perfectly with the results given in S-I.
The identification of each solution with its original
state is achieved simply by comparing the sign of
each solution R, with that obtained from Eq. (50)
by setting the value of R; on the right-hand side of
each equation equal to zero. The same solutions can
be obtained directly from Eq. (21), but with more
labor, by iteration method as suggested in Ref. 11.
Naturally, with this method, there is no need for
the identification of solutions with its original state.
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The distribution of zeros of the grand partition function is calculated in the thermodynamic limit
for a class of one-dimensional gas models in two ways: (1) from the equation of state and (2) directly
from the partition function. In this way one obtains (for these cases) a verification of the assump-
tions we had to make in order to associate a unique distribution of zeros with a given equation of
state. In the Appendix we present some numerical evidence for the validity of these assumptions

also in the case of the van der Waals gas.

1. INTRODUCTION

N the Yang-Lee condensation theory' the equa-
tion of state is discussed in terms of the (in
general complex) zeros of the grand partition func-
tion Z,(z; V, T), regarded as function of the fugacity
2. The discussion is particularly easy if one with
Yang and Lee assumes the intermolecular potential
to contain a hard repulsive core, making the grand
partition function a polynomial in z with positive
coefficients.

The grand partition function is defined in terms of
the intermolecular potential ¢(r), while the equation
of state is implied by the grand partition function,
One may therefore say that there are two ways to
explore the properties of the distribution of zeros
in the complex z plane:

1. One can investigate the relation between the
zeros of the polynomial Z, and its coefficients which
are complicated integrals involving the pair po-
tential ¢(r). In the general case one cannot of
course hope to determine the complete distribution,
but it might nevertheless be possible to say some-
thing about its location.’

2. One may try to infer the zero distribution
from the equation of state. This problem is easier,
since in the quantities involved the thermodynam-
ical limit is already taken. It has, however, no
unique solution.

We study below these questions on a class of
interacting systems, viz. one-dimensional gas models
with repulsive forces. In Sec. 3 we start with the
equation of state and determine a distribution con-
sistent with it. In view of the fact that the solution in

1C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

2 A very good example is Yang and Lee’s proof that for
lattice gases with attraction the zeros are all on a circle
around the origin,
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principle is not unique it is instructive to see how
one is led to one specific distribution. In Sec. 4 the
more difficult problem of a direct calculation of
the roots of the grand partition function is solved,
and the results obtained in Seec. 3 are verified. In
all cases considered the zeros are found to be dis-
tributed on the negative real axis.

By letting the lattice spacing go to zero and
simultaneously extending the repulsive potential
to more and more lattice sites, we obtain as a limit-
ing case a continuum gas model with hard-core
interaction.?

The relation between the equation of state and the
zero distribution for a van der Waals gas has been
studied previously,* and Appendix B contains some
numerical evidence in support of the conclusions
reached in that article.

2. MODEL

Consider a lattice gas of n atoms distributed on a
one-dimensional lattice with lattice spacing 6. The
interaction potential ¢(r) between each pair of
particles is

o if 7y d=
¢(r:) = {+ T < me

0 if r; 24,

1

so that the hard core extends over m lattice sites.
The total number of lattice sites is

where L is the total length of the system. We have
thusform = 1, 2, - - - , a sequence of gas models, and

3 The hard-rod gas has been studied previously. E. Hiis
Hauge and P. C. Hemmer, Physica 29, 1338 (1963).

4P. C. Hemmer and E, Hiis Hauge, Phys. Rev. 133,
A1010 (1963).
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form — ©,5 — 0, N > » while L and d are fixed, a
continuum gas of hard rods results.

The equation of state is obtained from the con-
figurational partition function Q,:

p/kT = (3/0L) In Q.. 3
The partition function in this case is simply

_ ,.N—mn+n)_ . (N — mn + n)!
Q"_a( n =9 n! (N — mn)!

the binomial coefficient counting the number of
possible configurations. In the thermodynamic limit
n— @, L— o, p = n/L = constant, one obtains
from (3) and (4) the equation of state®

00
p= —1n<1+1-—pm6)

_ kTm | Pd/m)
T d (1+ od

Tonks’ equation of state for hard rods,
p=kTp/(1 — pd),

emerges of course in the limit m — o,

» @

3. THE DISTRIBUTION OF ZEROS FROM THE
EQUATION OF STATE

The quantity
xz T) =1lim L InZ,(; L, T) (6)
Lo

is related to the equation of state by the well-known
Mayer equations
p/kT = x(@) @)
p = 2x(). ®
Inserting for the pressure from (5), we obtain
pd =1~ [mesp(xd/m) — m+ 117, @)
and by integration of (8)

—-m= d
zd/m = ¥ — (7™ TIX,

(10)
We assume that x(z) for complex values of z is

Gnix)
4.0

ol ofifd

105

I
i
]
I
1
L
t
1
3
!
i
I
t
It

=

-3 -2 -1

= _:e-l o X
Fi1a. 1. Distribution of zeros in the thermodynamic limit.

5 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

determined by an analytic continuation out from
the real axis. Together with the assumption that
the zeros of Z, coalesce into lines C as V — =, this
guarantees a unique solution. By (6) x(z) is the
complex logarithmic potential of the zero distribu-

tion g(s):
m=ﬁmm@7@d

In analogy with electrostatics, continuity of the real
part ®(z) of x = ® + ¥ determines the position of
the charges, while the discontinuities in the imagin-
ary part ¥ determine the value of the charge density
g(s).

The inverse function x(z), as defined by (10), is
multivalued with branch point 2, given by dz/dx = 0
vielding

(11)

= —1/d)A — 1/m)™". (12)

It is a mild convenience to assume d = 1 from now
on. With a cut from 2z, to infinity along the negative
real axis [since g(z) has to be symmetric about the
real axis], the analytic continuation of x is every-
where uniquely defined. On both sides of the cut we
find from (10) by inserting x = & + ¥

= 2 sin (¥/m) [sin (- m—l)\I’]]”"l

sin ¥ sin ¥ (13)
Above the cut 0 < ¥ < 7, below —7 < ¥ < 0.
The jump in ¥ across the cut determines the zero
density

gn(z) = —(1/m)(0%/dz), (14)

where ¥ is now restricted to (0, ). It is seen by
comparison between (12) and (13) that ¥ = 0 cor-
responds to the branch point z, and that t —» — »
for ¥ — .

Hence, the resulting zero distribution (14) is
always along the negative real axis and is sketched
for m =1, 2, and « in Fig. 1. It is apparent that
already nearest-neighbor repulsion yields a good
approximation to the continuum result.

In general it is not possible to eliminate the
parameter ¥. Exceptions are

7@ = 8@ + 1) (13)
9:(®) = [ 2] @ [2] — D, (16)

The limiting distribution ¢.(z) is identical with the
one previously found.?

4. THE ZEROS OF THE GRAND PARTITION
FUNCTION

The grand partition function is known exactly in
this case (with d = 1):

z < —3%.
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xN/Zml (N — mn +n)<%>n, a7

n=0 n

ZME) = 2 Q2" =

using (4). The case m = 1 is trivial:

Z"@ =1+, (18)
in accordance with (15). The case m = 2 can also
be done exactly:

2o = 2 (Ve
" (19)
=i_°(%.[ A+ " dt
2w 25 N\2/ Jow [+ DY ¢
Assuming |2] < [2(1 + ?)i], summation yields
@y 1 £ dit + )"
2@ = S Pt —z 20

=271 + 271 + (1 + 2
— 1 = (1 + 2",

since the path of integration encloses both poles.
The right-hand side is essentially a Chebychev poly-
nomial of the second kind. The fraction of the zeros

z, = —{cos [2nk/(N 4+ D] + 1},

k= 11 2131 e [%N] (21)
less than z equals (when N — =)
-1 - .,
6l) = {7(‘ Arccos (1 +277) z < -4, (22)
1 X 2 _%,

which is equivalent to the previously found distribu-
tion (16).

In the general case we again write the grand parti-
tion function as a contour integral:

s 1< (i) 49" dt
200 =5 55 [ T
_ﬂ dt(l + t)N+m—1
o2nt S mi(l + )"t — 2

(23)

where the path of integration must satisfy
lz] > m $Q + ™.

Having the results of Sec. 3 in mind, we first
try to find the real zeros z; less than z,, given by (12).
In this region we prefer to use ¥ as variable instead
of z, see Eq. (13). In addition we change the integra-
tion variable from { to

sin ¥ )
sin [(1 — m™)¥]

In this way the polynomial (23) is expressed as

v=»041)- (29)
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ZM@) = I,,-sin"** [(1 — m™)¥]/sin" ¥, (25)
where
L= $ LA — :
™ 2xt Jo™sin [(1—m ™ )¥]—v™ " 'sin ¥+-sin (¥/m)
(26)

The contour of integration encloses all m poles,
Where are these poles? Two of them,

.  xi¥/m
Vi,2 = € ’

@7)

are on the unit circle in the v plane, as is immediately
verified by insertion. In Appendix A is proven that
all the other poles are located inside the unit circle,

| <1, i=34,:-- (28)

The integral I,, equals the sum of the residues at
the poles vy, vs, <+ v,:

I, = Zm: res (v;).

i=1

, M.

(29)

For N — =, which is the case in which we really
are interested, all residues except the two first ones
vanish because of the factor »¥. Thus, for a large
system

= =X 1es (1) + res (v2)

(30)
_ M-l[ei(zv,ma—}w) _}_e-"(lv.\lus--i,r)]Y
with the abbreviations
N, = the maximum number
of particles = N/m (assumed integer), (31)
M = |msin [(1 — m™)¥] — (m — 1) sin ¥ ¢~*¥/"|,
(32)
and
tan 6§ = [cot (¥/m) — m cot ¥]/(m — 1). (33)

For large N, therefore, the zeros ¥, of I,,, and hence
of Z,, approach the solutions of

N¥ 4 6(0) =kr, k=12 --+N,.

Since 0 < §(¥) < i one easily sees that the zeros
satisfy

(kb — H&/N) < ¥, < k(x/NY), k=1,2, - Ny

(34

Since the degree of the original polynomial Z, was
N,, the N, zeros (34) are all zeros.

Since z decreases when ¥ increases [see Eq. (13)],

the zeros z less than a certain value z are obtained
for [N, ¥(z)/7] < k < N,. That is, the relative num-
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ber of zeros <z equals 1 — x '¥(z). By differentia-
tion this corresponds to the following density of
Z€eros;

9() = —='[0%()/oz]. (35)

By comparison with Eq. (14), one sees that we now
by rigorous methods have verified the distribution
determined in Sec. 3. Since the method of Sec. 3 in
general is easier to apply, the present verification is
encouraging.

APPENDIX A
We will prove that all zeros of the polynomial
N@ = v™sin [(1 — m )¥] — o™ sin ¥ +sin (¥/m)
(36)

are inside the unit circle, with the exception of the
two zeros

vy,2 = exp (Fi¥/m). - (37
The parameter ¥ may have any value in the interval
0< VT <. (38)
Factoring out the two zeros (37) we get
m—1
Pe) = — O S sin (b0/mpt™. (39

@—=0)0 —v)

The first part of the proof consists of showing
that P(v) has no zeros on the unit circle. Assume
that v = ¢ is such a zero. Then

k=1

20P@) = mii ot GHE/mE Eesw—wm)k - 0.

k=1 k=1

(40
First note that any sum of unit vectors D ;_, e™**
lies on a ecircle through the origin, centered at
[—3, 3cot(3a)]. Two such circles corresponding to
different values of « have only the points 0 and —1
in common. Therefore, both sums in Eq. (40) must
either vanish or else be equal to —1. In the first case
¢ satisfies

¢+ ¥/m) = 2k.aw/(m — 1) (41)
with integers k., k.. By elimination of ¢ we get

y y y
™~
x — x / x
Teos ™ T 2T N/
Y Y y
__GB_X B < S >——x
T T£Te T,

Fig. 2. Sketch of the van der Waals zero distribution at
different temperatures (taken from Ref. 4).

HEMMER, HAUGE AND AASEN

»=10

.
Fie. 3. Zeros of the van der Waals grand partition function,
Eq. (46), for V/d = 15. In the figure d has been used as the

unit of length. (Some negative real zeros of large modulus are
not shown.)

¥ = (m/(m — D)k, — k). (42)

In the second case ¢ must satisfy
¢.(¥/m) = 2k.x/m, 43)

in which case (42) is replaced by
¥ = (k, — k). (44)

Since both (42) and (44) are in disagreement with
Eq. (38) we conclude that no such pole of modulus
one exists.

For the second part of the proof, we note the
coefficients of P(v), Eq. (39), are real, positive and
increasing with m for small values of ¥. The Enstrgm
theorem® tells us that in this case the zeros are all
inside the unit circle, Increasing ¥, the zeros must
stay inside the unit circle. This follows from con-
tinuity and from the first part of the proof.

APPENDIX B

Reference 4 contains a study of the properties of
the zero distribution for a gas obeying van der Waals’
equation

p/kT = @ — &) —w™?, v=a/kT  (@5)
supplemented with the Maxwell equal area con-
struction, based upon the same assumption as the
calculation in the present Sec. 3. Qualitatively the
limiting distribution was found to fall into the
pattern of Fig. 2 (taken from Ref. 4), and only in
limiting cases were quantitative results obtained.

We found it of interest to see how well these
results agrees with a direct numerical calculation of
the zeros of the following grand partition function

Z, = :Z:::%‘—; 2, (46)
Qu = (V — N" exp [% (fg)} 47)

for a finite number of particles. The canonical
partition function (47) implies the van der Waals
equation (45), and it is well known that the pressure
from the grand canonical ensemble has a horizontal

8 G. Enestrgm, T6hoku Math. J. 18, 34 (1920).
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part instead of a wiggle for subcritical temperatures,
Moreover, one can, by physical arguments, make
the form (47) plausible as the partition function for
one-dimensional molecules interacting with a hard
core d plus a very weak long-range attraction, a
model known to rigorously obey van der Waals’
equation of state.’

7 See M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J.
Math. Phys. 4, 216 (1963), especially the discussion in the
concluding remarks.
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For a maximum number of particles V/d = 15,
the calculated zeros of the grand partition function
(46) are shown in Fig. 4. The limited accuracy (8
digits) of the computer made calculations with a
greater number of particles unreliable.

Qualitatively the distribution is as one would
expect from the predictions of Ref. 4. The quantita~
tive details that can be checked are in as good agree-
ment with the calculated limited distribution as one
could expect for such a small number of particles.
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It is shown that sequences {Pma(z)} of Padé approximants with m — « and n — » approximate a
function f(z) inside a certain circle of meromorphy with centre at z = 0. Extensions of this result

are discussed.

1. INTRODUCTION

HE value of continued fractions and Padé ap-

proximants in interpreting divergent series has
been appreciated for a long time. The classical
work of Wall’ gives a full account of the theory of
continued fractions; in a recent review paper,” Baker
has summarized the main mathematical results to
date, and has given an account of the applications
of the Padé method, in particular to perturbation
series. Many of the established convergence prop-
erties of Padé approximants are limited to series
of Stieltjes, but Baker, Gammel, and Wills® examined
the approximants (in particular the diagonal ap-
proximants) of many different functions, and con-
jectured that the convergence properties of Padé
approximants were far wider than those encom-
passed by existing mathematical theory. Baker*
has proved that an infinite sequence of approximants
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{Pna(2)}, with m + n — o, to a function f(2)
converges to f(z) over certain regions of the complex
z-plane in which the sequence is uniformly bounded.
The assumption of uniform boundedness needs to
be translated into more specific conditions, for
example a condition ensuring that the approximants
have sufficient poles and zeros to represent those of
the function f(z). A further question that remains
to be answered is: “where are the poles of the ap-
proximants f(2)?”’ The studies of Baker, Gammel,
and Wills® have shown that in regions of meromorphy
of f(2), the poles and zero of P,,(z) normally lie
near to those of f(z), but that on occasion an ap-
proximant may have other isolated ‘‘spurious poles”
in the region, each accompanied by a nearby zero.
It seems that there is in fact no meromorphic region
within which the number of poles of P,.(2) is
unbounded; this conjecture is an important part of
the Padé problem, and is as yet unproved.

This paper shows that it is possible to establish
the convergence of certain sequences of Padé ap-
proximants throughout certain sub-regions of a
region of meromorphy, without assuming uniform
boundedness. We have, however, to assume bound-
edness of the number of poles in the region. It has
not been possible to justify this assumption for
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{Pna(2)}, with m + n — o, to a function f(2)
converges to f(z) over certain regions of the complex
z-plane in which the sequence is uniformly bounded.
The assumption of uniform boundedness needs to
be translated into more specific conditions, for
example a condition ensuring that the approximants
have sufficient poles and zeros to represent those of
the function f(z). A further question that remains
to be answered is: “where are the poles of the ap-
proximants f(2)?”’ The studies of Baker, Gammel,
and Wills® have shown that in regions of meromorphy
of f(2), the poles and zero of P,,(z) normally lie
near to those of f(z), but that on occasion an ap-
proximant may have other isolated ‘‘spurious poles”
in the region, each accompanied by a nearby zero.
It seems that there is in fact no meromorphic region
within which the number of poles of P,.(2) is
unbounded; this conjecture is an important part of
the Padé problem, and is as yet unproved.

This paper shows that it is possible to establish
the convergence of certain sequences of Padé ap-
proximants throughout certain sub-regions of a
region of meromorphy, without assuming uniform
boundedness. We have, however, to assume bound-
edness of the number of poles in the region. It has
not been possible to justify this assumption for
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any particular sequence, but it will be shown that
spurious poles of an approximant in the sub-regions
of meromorphy are compensated by a nearby zero.

2. PRELIMINARY DEFINITIONS AND RESULTS

The invariance properties of Padé approximants
established by Baker, Gammel, and Wills ensure
that convergence properties of sequences {P, n+s}
(k fixed) of Padé approximants to a function f(z)
which are established inside a circle of meromorphy,
with center at z = 0, can be extended over large
regions of the complex z-plane. The essential result
of this paper is a general convergence theorem
within a sub-region inside the circle of meromorphy.
Consider a function f(z) which is meromorphic for
lz] < R. Then if p is any number less than R, with
f(z) regular on |z| = p, then f(z) can be expressed as

i e i ¢z
1) = = : = :{ ’
'_I_]l: A =2/t e

@.1)

where Y% ¢,2* is uniformly convergent at any point
in the region C defined by |z] < p, and where we
assume that none of the poles {; coincides with
the origin. We note that the total order of poles is

M= 3k (2.2)
and that ¢, = 1. For convenience, we normalize
the function f(z) by choosing

f0) = ¢ = 1; 2.3)

the results that we establish can be immediately
extended to any function of form (2.1) by mul-
tiplying by a constant.

We can expand the denominator in (2.1) by the
binomial theorem to give a power series expansion

f(z) = (;i dtzt (do = 1), (24)

then
M @ w0
[Z e,,z"]li > d,z':l = > ¢z
0 0 0

Assuming that ¢, is one of the poles nearest to the
origin and defining

2.5)

©2.6)

the series (2.4) is convergent for |z| < p;, and (2.5)
is an identity between analytic functions. For |z| > p,
the series (2.4) is divergent, but the sequence of
coefficients {d,} is well-defined, independent of the
value of z.

Pi = Ig'flr

A Padé approximant

Po(s) = (; a,z')(oi b,z')—l @.7)
of f(z) is defined by the identity
I:Z:: b,z':“:(i d,z'] = g: az" + 0™, (2.8)

The identity has precise analytic meaning when
|2| < p1. For other values of z, (2.8) is a formal
identity, the coefficients {a,} and {b,} being defined
by the linear equations

min (r,m)

bldr—a = ar (r = O) 1’ T Jn)’ (2'9)
a=0
min (r,m)
bd,.., =0
=0
Xr=n+1,---,m-+n). (2.10)

The first of Eqs. (2.9) is bedy = @, Or by = aq.
We choose a, = b, = 1. Then Eqgs. (2.10) are m
equations for b,, --- , b, and determine them
uniquely if the determinant of coefficients A, is
nonzero. Equations (2.9) then define a;, --: , a,,
so that P,, is uniquely determined. We note that
P,.(2) is then the unique rational fraction of form
(2.7) whose power series expansion agrees with (2.4)
up to O("™*").

It may happen for a particular function f(z)
and integer pair (m, n) that A, = 0. In general
(2.10) will have no finite solution and we cannot
define P,,. When we are discussing a definite se-
quence of approximants, we assume that it does
not contain any which cannot be uniquely defined.

It is also possible that A, = 0 and that Egs.
(2.10) have an infinity of solutions. We shall now
discuss a function fo(z) for which this happens,
when the numerator in (2.1) is a polynomial in z of
degree N:

CRPYL_AEND ) L.
[} = . — :
20 2 I a — /5

It is assumed that the numerator and denominator
in (2.11) have no common factors. If by chance
they have a common factor, the results established
here are are not substantially altered.

If the expansion of (2.11) corresponding to (2.4) is

fo(z) = (;i dmz‘;

(2.11)

©2.12)

then

l:i:: euz"][ i do,z':l = oi cz'.  (2.13)
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It is clear therefore that if #;(z) is any polynomial
of degree H in z, then Eqs. (2.8) defining the Padé
approximants

P.o(z) = (‘0{__‘, ao,z’x%m: bo.z'>—l (2.149)

are satisfied if we choose

3 a0’ = m@[f: czz‘] >N +H),
0 0 2.15)

AZVJ bost" = wg(z)[gle&“] (m > M + H).

So for a function of form (2.11), functions P,,..(2)
satisfying (2.14) and (2.15) are Padé approximants of
fo(2), with coefficients {a,,} and {b,,} satisfying (2.9)
and (2.10). We now establish the converse, that all
Padé approximants of f,(z) are of this form.

If we multiply the equation analogous to (2.8)
by D ¥ e,2", we obtain

2o 3o

Form > M, n > N, no terms in the two products
here contain terms O(z"*"*"), and so

(S $o]
= [:Z ao,z':H: “:Z euz“]. 2.16)

This equation is an identity for |z] < p;; hence it
is an identity for all 2. Since 3" ¢,2" and D * e,2*
have no common factors, it follows by the remainder
theorem that >_" a,2" and )" bo.z* are of the
form (2.14). So we have established

Theorem 1: The class of functions defined by
(2.14) and (2.15) are the Padé approximants of the
function f,(2) defined by {2.11).

This theorem means that the Padé approximants
of fo(2) with m > M and n = N are effectively

identical with f,(2), and that we are justified in
taking '

Pmnﬂ(z) = fﬂ(z)'
3. THE APPROXIMATION THEOREM

We have established (2.17) for the function f,(2),
and it is not difficult to show that a function f(z)
of form (2.1) is approximated by f(2). It is there-
fore necessary to relate the approximants P,.(2)

(2.17)

and P,,.,(2) of these two functions in order to show
that P,..(2) approximates §(z).
Since D3 ¢,z* in (2.1) is uniformly convergent
for |2] < p, we can find a constant L such that
¢ < LP..‘ (t = 0,1,2, o)y
where L is independent of &
Consider the coefficients {d.} in (2.4) and {d,}

in (2.12). Since the numerators in (2.1) and (2.11)
agree to order 2",

3.1)

d; = do (t < N) (3-2)
If we write
—ka had
I (1 - iﬁ'-) = 2o, (3.3)
then from (2.1), (2.11) and (3.1),
13
di — doy = Z Culi—u
u=N+1
&
<L Z P—“gt-m
N+1
fort > N. Also for b > N, writing || = 7,
A A []
Z l(d: - doz)zcl < z Lt Z " Igf'*ul
t=N+1 EmN+1 u=N+1
r N+3} h=N-1 r u A-N—1
<L ” > ["] 2 g 3G9
u=0 P w=0
Now from (3.3) and (2.6), we know that
h—=N=-1
2 lgulr

consists of terms up to O@¢* %!

expansion of

) oceurring in the

n6-2)”

i B
and hence is dominated by terms in the expansion

of
II (1 - ﬁ)ﬂv.

] P

+

Therefore (3.4) gives

h

Z [de — dor)e'|

t=N+1

<o) (- R R )
< 2f) (1 - 2 QLEEN ST S (1)
RIS LA

< (1 -

p
_7:)_1 1 — (/o)
p

1= (/o) 8.5)
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Provided that

r< ol — ¢ (8.6)
and

Ir — pil 2 epis 3.7
then from (3.2) and (3.5)
h
oz l(dt - doz)zll

s (M + ho— N _ 2)Jl'-l (I)N+l
< Le )] ,,
r h=N=1
X Max [1, (p—) ] (3.8)

forh > N.

Now consider the approximants defined by (2.7),
(2.8), (2.14), and (2.17). We have

pon= [ § o]
[$efge
(gl En]

x[ £ @ - aw |+ 06,

In order to apply Theorem 1 later, we assume
m>M, n = N;

then since D, contains no terms of order higher
than 2™*",

|P lln(z) mno(z) l
Eo b2 208 1boz’] 206" Ide — dore'|,

IEO be'| IZ" bo,?' |

3.9

The last factor in the numerator is bounded by
(3.8). From (2.17) we have

M
2 b’ = I (@ = 2/8)".
1] %
Thus for points in C obeying (3.6) and (3.7)

M

Zo |bo-z|_ —MII(1+ ) ,
| 220" bos2’| ‘

a bound which is independent of m and n.

In order to provide a suitable bound for the

third factor
m m -1
(£ war)([Z0])

(3.10)

in (3.9), we must assume that the total order of
zeros of % b,2* in the region |z| < p is bounded
for all (m, n). Thus, we write

Soe =11 (1 - -"—)M I (1 - %)w, 3.11)

(3.12)

ZhiSF‘

for some finite integer u independent of (m, n),
but dependent on p, and where

= |t >»p

for all 7. If we now consider s point z satisfying
(3.7) and

(3.13)

IT - 0';' 2 €0; (3.14)

then using (3.7), (3.11), (3.12), and (3.14),
A o) [rte]™
S <e H (1 + 0'1‘) — p] (3.15)

Now we have taken N = n, the “best’ value of N.
Putting » = n 4+ m in (3.8), and also using (3.9),
(3.10), and (3.15), we find

IPant®) — Puns(@)
<Bm + M — 2),,_1(9»1( s ),,H

p—r
P m—1
X Max |:1, (——) :|
P1

where B is a constant dependent upon p and e,
but independent of m and n.

Let us first assume that n >
being fixed)

lim(m + M —

M=+

it follows that |P,, — Pumo| — 0 provided
(o + 1) <1

plo — 1)
"otn) .

poi(p — 1)
The condition (3.17) is

2] =r < p(v2 — 1) =1,

(3.16)

m; then since (M

2)‘{/’" =1,

r < p)y 3.17)

> o). (3.18)

3.19

say. Provided the distance p, of the nearest pole
of f(2) from the origin exceeds r,, (3.19) is the eondi-
tion that P,, and P,. approximate each other.
If p, < 1y, the range of r is r < r,, where r, is the
unique root of
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'I‘i(p + 1) = ppi(p — 12) (3.20)

Iying in the range 0 < 7, < r,. Thusas m, n —» =
in any way such that n > m,

|Prn(2) ~ Pmno(@)] — 0 (3.21)

uniformly in 2 in the region defined by (3.7), (3.14)
and

] < Min (ry, rs) — ¢, (3.22)

7y and 7; being the positive numbers defined by
(3.19) and (3.20). Since P,.(z) and P,.(z) are
uniformly continuous in the region A defined by
(3.22) and

|2 — &l = eps, |2 — £ 2 ey,

{3.21) holds uniformly in A.

To establish a similar result for n < m, we note
that if P, is the (m, n) approximant of f(z), then
P} is the (n, m) approximant to [f(z)]™". Now ¢{z)
is meromorphie where f{(2) is, so applying the result
(3.21) to ¢(2), we know that if m, n — « with
m > n, then

(3.23)

|Prn — Prno| = 0

uniformly in the region A, except near to the zeros
of ¢(z) and its approximants. Therefore (3.21) holds
in A for any sequence of values of the pair (m, n)
for whichm — o« and n — .

Now from (2.1), (2.11), (2.17), and (3.1),

[{@ — Pum(@| < Le ™7/ p)™
in the region defined by (3.7), (3.14), and (3.22).
Again using uniformity of continuity, we see that
/) — Panole)] — 0
uniformly in the region A as n — <., Combining
this result with (3.21), we have proved that
) — Par®)] = 0

uniformly in A as m — « and n — « in any way.
Now given a number o less than B, we can choose
p and e to satisfy

p <R,
Then we have established

Theorem 2: A function f(z) is regular and non-
zero at z = 0, and is meromorphic in the region
lz2| < R, and ¢ is any positive number less than E.
Let {P..(2)} be an infinite sequence, with m —
and n — « in any way, of Padé approximants to
f(2), such that the numbers of poles and zeros of
every approximant in the region |z] < o are each

o< p— €

less than a number u(s) independent of m and n
Then the sequence {P,.(2)} converges uniformly
to f(2) in the region A defined by (3.22) and (3.23).

If p, > r, so that r, < 7, the region (3.22)
is a circle, center the origin, in which f(2) is regular;
inside the circle of convergence, it is easy to prove
that {P,.(2)} approximates f(z), so that the theorem
is not very significant. But when p; < 7, so that

Ty < 1, (3.20) and (3.19) give

rlp + 1) —

A r3(p + 13) =
plo — 1)

T2 plp — 13)

1.

Thus at least one pole lies in the circle (3.22),
for small enough e. If p, < p, then r; < p, and
(3.20) gives

B, Tz,

Tz P
So when the nearest nonpolar singularity (o) is
much further from the origin than the nearest pole
(1), the radius (r,) inside which f(z) is approximated
by {Pn.(2)} much greater than p,. Hence the
theorem establishes convergence of {P,.(z)} well
beyond the radius of convergence of 3 d,z".

If the function f(2) is meromorphic in the whole
of the finite z-plane, then we can choose B and
hence ¢ as large as we please. Thus a meromorphic
function f(z) is approximated by any sequence
{P,.(2)} with m — « and n — « independently,
provided the number of the poles and zeros of
P..(2) in any finite part of the z-plane is uniformly
bounded.

We also note that by letting n — « more rapidly
than m in (3.16), the restriction (3.22) on |z| can
be eased. For example, by choosing n = m® we
obtain a sequence which approximates f(z) through-
out a region lz] < ¢« < R.

4. DISCUSSION

If we consider a sequence {P, n.:} of approxi-
mants with %k fixed, the invariance theorems of
Baker, Gammel, and Wills® allow us to replace
the region of meromorphy |2| < R in Theorem 2
by any finite domain D which is the union of regions
derived from |z| < R by transformations of the type

z—w = Az/(1 + Bz).

Under these transformations, the region (3.22) trans-
forms into a sub-domain D' of D. Thus sequences
{Pa m+} will approximate f(z) throughout regions
of meromorphy which will often extend over large
regions of the z-plane. The restriction (3.22) is
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rather peculiar, and one feels that the region of
uniform convergence should be the whole of D
apart from small regions near the poles and the
boundary.

We can see that the restriction (3.22) reflects
the known behavior of approximants if we consider
a function f(2) which has an isolated essential sin-
gularity at, say, 2 = R. This singularity is ‘‘sim-
ulated” in approximants by the clustering of poles
and zeros of P,,.(z) near to z = R. Thus a critical
factor approximated by (p — 7)™ in (3.16) is in
fact expected to arise, z = R being a limit point
of poles. What is not reflected in Eq. (3.16) is the
fact that these poles of P,, are compensated by
nearby zeros. However, even if the factor

(P + r)m-l-l
p—T
could be eliminated from (3.16), the factor (r/p,)"*
would still prevent us from establishing convergence
of diagonal sequences throughout |z| < ¢ < R.
The problem of eliminating the factor (4.1) is
part of the larger problem of locating the poles
and zeros of the approximants P,,,(z), and in par-
ticular showing that in regions of meromorphy the
poles of P,,(z) either are near to those of f(z) or
are accompanied by a nearby zero. This last property
can be established in any domain § in which {P,.(2)}

@.1)

approximates f(z) uniformly. Consider the integrals
of the logarithmic derivatives of P,.(z) and f(2)
round any contour v lying in 8 which does not pass
through any poles or zeros of f(¢) and its approxi-
mants. The difference between the integrals can
be made less than 2z in magnitude by taking m
and n large enough; since the integrals are integral
multiples of 277, we know that they are then equal.
So if (Py, N;) and (P, N,) are the numbers of poles
and zeros of P,,(2) and f(2) respectively,

Pl—N1=P2—Nz.

Thus the poles and zeros of an approximant in the
region § either lie near to those of f(2), or else they
occur in pairs, giving nearly canceling factors in
the denominator and numerator of the approxi-
mant.

Thus the two large problems in the theory of
Padé approximants, the location of the poles and
the specification of the region in which a sequence
approximates a function f(z), are closely linked.
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This is the first of the series of three papers which introduces complex space-time to describe physi-
cal phenomena. The objective of this generalization is twofold: firstly, to geometrize gauge trans-
formations and electromagnetic fields, and secondly, to quantize space—time in order to remove serious
divergences from the field theory. In this paper classical fields are discussed in complex space~time
with a view of subsequent generalization to quantum field theory in quantized space-time,

L. INTRODUCTION

'HIS paper prepares the groundwork for the

quantization of space—time which follows in
the next one. If we want the quantization in such
a fashion that measurements of four real coordinates
should not interfere with each other, then we have
to enlarge the background space at least to real
eight-dimensional or complex four-dimensional space
(two conjugate variables to each measurement). But
this generalization immediately enriches the group
of transformations under which physical laws could
be covariant and thus offers the possibility of fusion
of so-called iso-groups into geometrical ones. For
the sake of simplicity we consider the group L,3 X U,
which is the simplest possible generalization of the
proper Lorentz group to absorb the gauge trans-
formations’ and is of course a possible group of
transformations in four-dimensional complex space—
time. Moreover, the complex space-time can give
a geometrical meaning to electrical properties, and
we identify the electric charge as angular momenta
in complex planes.

In this paper, firstly, we shall discuss the rep-
resentations of the group L,{ X U,, and secondly,
the Lagrangian mechanics of fields in complex
space~time.

II. THE SEVEN-PARAMETER GROUP L,} x U,

Throughout three papers, units are so chosen that

k ¢ = | = 1, and all physical quantities are
expressed as pure numbers. Let us consider the space
spanned by four complex planes coordinatized by
2* (k and other Roman indices will take values 1, 2,
3, 4) and generalize the Minkowskian metric form to
% @~ |42 — |2 + |det]? 2.1)

= n,;; dz* d2'.

* This paper has been prepared under Research Grant DA-
ARO(D)-124-G-602, U. S. Army Research Office, Durham.

1 ¢f, J. Rzewusky, Bull. Acad. Polon, Sci. Classe (III) 6,
26, 339 (1958); Nuovo Cimento 9, 942 (1958).
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Here we have assumed the summation convention,
bar denotes complex conjugation and 7., is the
metric tensor,

The homogeneous linear transformation

¥ = A%, ¥ = AR,
which leave the metric-form (2.1) invariant, satisfy
A'A =g, det A = &, 2.2)

where matrices A [@},], 7 = [nyl]; a is a real
number and the dagger denotes Hermitian con-
jugation.

The linear transformations in (2.2) form a 16-
real-parameter continuous group.” This group is
much richer than the ordinary homogeneous Lorentz
group. It should also be noted that in this group
there is no disjunct proper and improper subgroups.®

For the sake of simplicity we shall consider only
a subgroup of the group defined in (2.2). This sub-
group is denoted by A:; ~ af,e”, where ¢ = [a',]
is an element of L., the proper, isochronous sub-
group of the homogeneous Lorentz-group and e’
is an element of one-dimensional unitary group U..
The product group® L, X U, is a 7-real parameter®
continuous group and suffices our prime purposes.
Though we have not considered space reflections,
the total reflection can be taken care of by putting
] . Also, ¢ ir generates the reciprocity
transformation.

The basic space of representation® for L, X U,
can be coordinatized by z** and the conjugate space

by 2~ = z**, so that under L,i X U,, the trans-

2 ¢f. A, Barut, J. Math. Phys. 5, 1652 (1964).

3 of. H. Frohlich, Proc. Roy. Soc. (London) A257, 147,
283 (1960).

* The cross denotes the direct product or in matrix language
the Kronecker product.

6 Tt is well known that, if we want gauge transformations
besides proper Lorentz transformations to_be induced by
transformations in spin space, then also we have to consider
a seven-parameter group.

8 This may also be considered as space of ray-representa-
tiOIl of LqI.
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formations induced in these spaces are

Erd’ E’ 3
2 + = q" e:uoz*

mod (2*'*") < mod (a*;) mod (2*),
arg (%) = arg (") % 9,

(2.3

where upper and lower signs should be read sepa-
rately.

We shall physically interpret mod 2** as what
we usually measure for positional coordinates,” and
arg z'* are the electrical or internal coordinates.
The transformations U, on z** form circular group®
and will induce gauge transformations (a misnomer
for rotations!) on field quantities.

The tensorial representation of L, X U, would
satisfy the following transformation rules:

i(a—~8)0 &' §'

™ l_Jl___J_e CRTVIEES
r s N ——
x T(,-...+ ..... . (2.4)

The tensor fields are defined by the following trans-
formation properties:

T[i it +'nl—_';-l( P18 A k"')
r s ¢
- e“'_‘)o‘&l;; T-‘i--+ ..... (zk+’ zk-). (2.41)

r

In (2.4) the set of 4" formal functions of complex
variable z** and 2"~ are assumed to be continuous,
partially and totally differentiable in the domain
of consideration. But these formal functions may
not be analytic functions of four complex variables
and need not satisfy Cauchy-Riemann conditions.
The unimodular factor in front of right-hand side
of (2.4) corresponds to gauge transformations.

The raising and lowering of indices are defined
as follows:

A def -~Ai+ A = n-‘iA-.r
1) ‘ ? ’ 1
def A:., Ai'— = A;‘,
so that expressionslike 4;,B** =A*"B,_= ;A" B'*
are invariant under L, X U,.

Tensorial representations of L,f X U; in (24)
are in general reducible, and irreducible components
can be obtained by applying permutations on indices
according to the Young tableux. But these rep-

resentations do not exhaust all irreducible rep-
resentations and leave out spinorial representations.

2.5

7 The negative va.lues may be obtained if we impose the
restnctlons 0 < arg **
8 See S. Bochner and W T Martin, Several Complex Vari-
ables (Princeton University Press, Princeton, New Jersey,
1948), p. 10.

Therefore, to obtain all irreducible representations
we should recall the homomorphism L, ~ ¢,
where ¢, is a two-dimensional unimodular group.

In their basic spaces of representations, ¢,, &, U,
induce following transformations:

et V' = ¢SV & V¢ = &4V
U, : V' =€V, V' =e "V, det [c%] =
where Greek indices take value 1, 2.

The [(27 + 1)(2f + 1)]-dimensional space of
representation of L,i X U, ~ ¢, X & X U, is
spanned by monomials
(Vl)zi—k(VZ)k(Vi)zl’—k’(Vﬁ)k' Vt I'/t’

(25 — k)R (2 — BRI

Bl <j, <7y @7

The transformation (2.6) induces the following

transformations in monomials,

’ —_
P(aa’) - 2‘;: ; D(ac’)(u')Pu’)

2.6

P(kk') =

— ei(l—t')d

2i—o\( ¢ \2 -\ ¢
X kZ kE( kl[(Zj)(fc ; "2') ((2j’ ig q’))!(;/ !li— kz)
X (@) ) TR )

X @D TR D e R @.38)

The [(2j + 1)(27' + 1) X (2§ + 1)(2/’ + 1)]-dimen-
sional matrices D g,y s+y are irreducible representa-
tions of the group L,I X U,. The transformations
D (4q'yaay are induced by (2.6) in the space spanned
by the spinors g @sifissBairteeimee which is sym-
metric into 2§ undotted and 25’ dotted indices.

Finite-dimensional representations of L, X U,
are not unitary because L, is not compact, but there
exist infinite-dimensional unitary representations’
of L, X U,.

The representation of infinitesimal L, X U,
transformations is of the following form:

= I + 378, + der, 2.9)

where [e] > |¢[*, |¢®] > |¢€°]%; 7 is an integer, and
also,

D(qa’)(kk’)

abd ba
€ = —¢°, Sep =

—Sba'

Lie-Cartan integrability conditions satisfied by
infinitesimal operators S,, are'®
(19° S)cc Harishchandra, Proc. Roy. Soc. (London) A189, 372
10[A, B] def AB — BA; &4 is the Kronecker delta;
Cip,mn Are structure consta.nts, Jab,0d is the metric tensor.
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{Skm S

rs
mn] = Clm,mnsrlo

det
C;;,.n = fom 6':;‘ an

— 1?&,,.5’:95;
+ M8yl
= 4(”60’731 - nbdﬂac)‘

The fact that det [g,s..] # 0, and g, is DOt
negative-definite shows that IL,I (consequently
L X U,) is semisimple and noncompact.'*

 Mn 6:1‘8:,,,

def ,, mn
Fab,ea = CapomnCed,ra

1. WAVE EQUATIONS COVARIANT UNDER
Lix U

We take as the basic wave equation the linear
first-order form

(a“ah- + a7 —imDy =0, 3.

where the matrices &** are required to be an irre-
ducible representation of an abstract ring and

def 0
s =
azki:

We shall derive the general commutation rules
for the o«** matrices from the condition of L, X U,
invariance which requires

ki kI
P4 = Qg ,

Y o= 830’

So** 87 = aha't.

(3.2

The quantity P o**ps, + " ps- undergoes the
following transformation:

P’ = o**pls + " pi-
= SPS™.
As a matrix of finite degree, P satisfies a minimal
equation whose coefficients are polynomials in py..
But (3.3) shows that the minimal equation is in-
variant under L,§ X U, so that ;*:, containg P in
the invariant combination |p|* % 4*'pu.pi-.

The minimal equations containing even or odd
powers of P can be written in the factorized forms,
respectively, as
(P* = al [p[YP* — @l Ipf) -+

X (Pz Y ipiz) =0,
PP — al [p[)(P* — al [p[) -+

X (Pz — Gl f'p!z) = 0.

(3.3

34
and

1 of, L. 8. Pontriagin, Topological Groups (B, G. Teubner,
Leipzig, 1957-58).

We can express these equations in the following
way:
[ Dreprs -+ abal-‘Pk—pz—
+ (@' + a7 ~ ey )]
X {a’”a“pmpﬂ + a" " PP
+ (@™ + o 0™ — Gl ™) PmiPa-] = 0,

or P times this is zero. Since these are true for all
complex numbers p.., the coefficient of each term
of the matrix-polynomial equation must vanish,
that is

E+ 14 +
Za at e a™dt =0,

b~ 1 -
aa e av ™ =0,

0 (3.5)
Z (aﬂ I~ + al-aiu- — 0117?’“) e

X (am-!-aa + T~ m-l- — a2”1'71mn) — 0’

or «** times (3.5), and here 3, denotes summation
over similar terms with all possible permutations
of the indices k=, I+, m, n-k.

As an example let us study the minimal equation

P’ —IpP =0, (3.6

which corresponds to the generalization of the Dirac
equation. The corresponding «**, according to (3.5),
satisfy

b+ 1 1 R B g -
!t 4 atfe*t = T ol e = 0,

8.7

k'l' l—'+a a = ”kll’

The irreducible representations of «'* satisfying
(3.7) are (16 X 16)-dimensional matrices, explicitly
displayed in the following.

=0 IXG DIXGE DXGD,
dT=0G X6 IXGE DXGM)

& = 1) X (o
@ =6 XE )XG
=06 DXGEDXGE )X G,
=D X6 -DXE XG0,
=06 D X6 X6 - XGo),
& = () X6 -0) X6 -DXG ).

The generalization of Duffin-Kemmer matrices

for the case of spin-zero particles has the following
{9 X 9)-dimensional irreducible representation:

DXGD,
DXG,

J X G

3.8)
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r60000000 OT —00000000—17
00000000 O 00000000 O
00000000 O 00000000 O
1+ 00000000 O 1- 00000000 O
[+3 = 100000000 -1, & = 00000000 O ,
00000000 O 00000000 O
00000000 O 00000000 O
00000000 O LOOOOOOOO [¢]
L40000000 0. 00004000 oOd
r00000000 O rooo00000 Oj
00000000 OW 00000000 —
00000000 O 00000000 O
2+ 00000000 O 2= 00000000 O
[+ = 100000000 O|, & = 100000000 O,
00000000 -1 00000000 O
00000000 O 00000000 O
00000000 O 00000000 O
LO0$4000000C O 000004300 O
r00000000 Oj r00000000 O
00000000 O 00000000 OW
00000000 O 00000000 =1
3+ 00000000 O 3- 00000000 O
Q = 00000000 0|, =1{00000000 O; ,
00000000 O 00000000 O
00000000 -1 00000000 O
00000000 O LOOOOOOOO 0
L00400000 0O 00000030 04
rOo0000000 07 rcooc0goo0000 07
00000000 O 00000000 O
00000000 O 00000000 O
4+ 00000000 O 4- 00000000 1
o = 00000000 O(, «x = 100000000 Of .
00000000 O 000000600 O
00000000 O 00000000 O
LOOOOOOOO 1 00000000 O
00040000 O Lt00000004% 04
(3.9)

These satisfy the relations

i §+ k+ i+ i+ k* i kt f& kt & i%
oot F aTa e o« a't + aa’ T

i+ kx iF k+ ix i+
+ ¢ a't + o o' e’

=0, (510

aitai$aki + ai#(xitaki + aiiaktaﬂF + akiai¥ait
+ ai$akiait + aktaiiaiF — niyakt + nkiait.
To construct the energy—-momentum-stress tensor

and charge-current vector for a wave field ¢, we
need a nonsingular matrix A such that

@' = Ad*TA (3.11)
If such a matrix should exist it can be chosen
Hermitian because (AT)™ commutes with all the
irreducible o** from (3.9), and therefore, must be
a multiple of the unit matrix.

For the set of matrices in (3.8) the corresponding
A is given by

w6 D)% )
x(o %G 1)

Before concluding this section we should mention
that the problem of finding all wave equations
covariant under L,f X U, hinges on the solution
of the equation

[Sab, a“ = (3.13)
together with the first one of the equations (2.10).

(3.12)

k 1+ k 1 £3
Oape ™ — 8anaa ",

IV. THE LAGRANGIAN FORMALISM

In this section we shall consider 15-parameter
inhomogeneous linear transformations of the type

= a** 4 ot 4.1)

Tensor fields transform like (2.4) under (4.1). The
infinitesimal version of (4.1) is

o+’
z

2 = 4 (85, + DA £ 9™, .2)
P def rrer ke k2 k mx . k%
AR 2 =€ -+ €m@ £t ,
where |¢*], |é.], |e] are small positive numbers.

Under (3.2), the tensor field"? ¢'*(z*, z7) suffers in-
finitesimal transformation and the local variation is
8o ¢ @, ) — e, 2)

= (%e“bSab + el (27, 2),

neglecting O[¢, (¢**)’] terms. The substantial varia-
tion is defined as
b T ol @, 2) — 06, )

= —€ 0 — €00 + 3 [Sii..

4.3)

+ - e
— 200a1+ — 20a1-lo

+ de[r — 204 + 27010, 4.4)

where
z[;au]+ déf z‘;aa+ - z‘:ab+;
and we have neglected higher-order terms.
We define the invariant action integral for field
quantities as

A“é‘f-.-fmd*z*d'*z-L
aQ Q

X [¢..’ ¢..’ 3;,+q0", ak_@“, ak+¢..’ ak.—(O”]. (4.5)

In each plane the contour of integration may be
chosenasc :argz’ = ir, é:argz” = — in.

Functions ¢ (2%, 27) and &' (27, ") are assumed
to be continuous and to have up to second-order
partial derivatives with respect to 2**, 2*~ in the
domain of consideration @, {. The domain @, &
defines a simply connected region in the eight-di-
mensional space spanned by Re z**, Im 2*". We
do not consider ¢ ’s as analytic functions of four
complex variables, because in that case the varia-
tional principle 64 = 0 would yield integro-dif-
ferential equations instead of partial differential
equations. Besides, ¢ ’s would have to satisfy the
extra conditions of analyticity.

12 (g%) def (1% g2E, g3k pak),
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If we apply the variational principle
84 =0, &[o(Q)] = & [6(D)] = & [5(D)],

where o, ¢ implies a regular hypersurface that
encloses the eight-dimensional domain defined by
Q, &, then we obtain the following field equation

oL L

oL

O 30 =+ O 29 . 30 =0,
k+P ¥ (4 (4:6)
oL oL oL

6“ aak+¢.. + ak— 66,,-(0" - a{b. = 0.

The invariance of the action integral (4.5) under
Infinitesimal transformations (4.2) yield

4+ 34 = oL 5 .
PR P .___._6
.[n fa dz"dz [ak+(<90k+s0" ¢

_%_ oo k+) ( oL _ s ..
+ 66k+¢" 590 + Léz + Ox- EY PSR 5¢’
AL .. ke
-7 5§o + Léz )] = O, (47)
09,-&

where we have neglected the second-order terms.
Because (4.7) is valid for arbitrary @, { we obtain
Noether’s theorems by putting the integrand to
zero, i.e.,

oL - L s H)
=0 — 8o L
Oy (36k+¢” © 300" o + Loz
oL - oL . k_)
YL .. _va 8 . — R
+ ak—<aak_¢.. oo + FENER ¢ + Léz 0

4.8)

If we consider the case when &* > 0, ¢ = 0,
e = 0, then (4.8) yields differential energy—-momen-
tum conservations as

s k:.+ + 0k k;+ = 0,
ak—Tl.c;;— + ak+T,.cr:— = Oa

(4.9)
ks def aL .. aL -.. ok
k = s & = On - mL’
7 m aakiﬁa am ¢ + 6(9“(9" :(:§0 6
k+ def aL .e aL . -
= — O — = O .
g 00,0 0 + 30::7 P

With &* = 0, &’ = 0, ¢ = 0, from (4.8) we obtain
differential angular momentum conservations as

oL -
3k+[m.”7 (S;z'z.. - z?baa1+ - zlbaal—)ﬂo

oL - ...
+ == (Si.. — 2(0a1+ — 200a1)@ " + L5?(a2b‘;:|
90,49

oL -
-+ ak_[aak_ga.. (Sab - zrbaul+ - zlbaal—)fa"
oL .. + - o o~
-+ 66,‘_{07 (Ss.. = 26901+ —213041-)@ + L& 12, |=0.

(4.10)

With ¢* = 0, ¢ = 0, ¢ # 0, we obtain the
differential conservation of electrical charge—current
as

ak+jk+ + ak—jk_ =0,

ke def .

oL —
:tzel:aamo,, (r — 2" 0,

aL
00:.0""

+ zm+am+)€0“ - (7' — 2" s

+ 2" 0,08 + z"*L]- (4.11)

If we assume the invariance of action integral
under the infinitesimal phase transformation*®

S0[.. — ¢..ei¢ = ¢(1 + 1:6) + 0(62),
¢/-. = ¢“6_“ — ‘;(1 —- 26) + 0(62),

then we obtain the differential conservation of the
density current as

ak+nk+ + ak_'nk_ = O,

o]
00 " T G005 ¢

V. THE COMPLEX SCALAR FIELD

4.12)

We shall illustrate the Lagrangian formalism by
the example of the complex scalar field. The La-
grangian we choose is

L = 4" (@, 2)0n-0 (", 2" — mp™.  (5.1)
Field equations (3.6) derived from (4.1) yield
(104490 + m7)e* = 0. (5.2)

This is the generalization of the usual Klein~Gordon
equation into the complex space-time,'*

The canonical energy-momentum-—stress tensor,
the electric charge-current vector and the density
current vector for this field can be obtained from

18 This is a nongeometrical transformation!

M4 As partial differential equation, (5.2) differs from the
usual Klein-Gordon equation in one respect. In Cauchy
problem with the usual Klein-Gordon equation we would
choose as data the functions ¢* and their time derivatives
on the initial hypersurface. But with reference to (5.2) we
could choose as Cauchy data just the functions ¢=.



50 A.

(4.1), (8.9), (3.11), (3.12), and they are
T = Thre = 17(00-¢ Omse”)
— 51" (Bar0’ Bop” — mip'p7),
i = Gl £ (1 — 2770, + 27 9,.)0"
+ 0 (Basp s — M P,
re

n** = in* 00 0]

(5.3

Assuming suitable restrictions, the Fourier integral
theorem® for the functions ¢* is®

- 1 ~
‘o*(z-’.’ 2 ) = -(27)4 f LIRS f e d4p+ d4p_a*(p+, p )
:l:-’(m‘+s"++w—:"").

5.4

The Green’s functions for the partial differential
equation (5.2) are

G(a)(z+’ Z-; 2’+, 2'_)

=—(2—11r?f.”j;mf“'_/;(_)d4+d4"

Slpas (¥ Fma k) 4pp (2h-—g k)

X 31" pispi- — me

X , (5.5)

—1'"puspi- + m’
where ¢,, é, are different possible contours in com-
plex p,, or ps_ plane.

If we assume single-valuedness of ¢* in 4 complex
planes, and some more suitable restrictions,'” then
the Fourier-Bessel integral theorem for ¢* can be
written as

ot = fo L fo " @ Heikaks

X Z e Z amn.n.n.(klv kz; ka, kl)

nym—c Nem—@®

X T (") Ty (2ot T s (2het®) T ()
X gt OIS s ik — m),

where 2** = r*¢**"" (k not to be summed).
Furthermore, if ¢* does not depend on 6*'s, then
(5.6) can be simplified

(5.6)

ot = f f B% rleakoakaaln, Koy ks, ) T o(2Hir")
0 0

X Jo(2ka") o 2kar") o 2kar®) - 8(n* ke ike; — m®). (5.7)

Also, associated Green’s functions can be ex-
pressed in the following form:

15 of R.E.A.C. Paleig and N, Wiener, Fourier Transforms
in the Complex domain (New York 1934).

16 5(k) is the Dirac delta function, and its use can be justi-
fied with distribution theory.

17 N. Nielsen, Handbuch der Kugel-Funktionen (B. G.
Tuebner, Leipzig, 1904), pp. 360-363.

DAS

Gelr, ) = f f ' kb o2k

X Jo(zkzrg)J0(2k37'3)Jo(2k4r‘)
X Jo(2hir™) T o(2hear’®) T o(2ksr’®)
x Jo(2k4f")(_ n"k.-k,- + 7)12)_l . (5.8)

VL. THE COVARIANT WAVEFIELD

For a covariant wavefield the Lagrangian is chosen
to be

1 k+ -
L = 5 (0D ¥ + (oD

- ';ak+ak+‘p - ‘;ak-ak—'p] + m';I'pv

where o** satisfy (3.5) and ¢ 2L YtA.
The field equations (4.6) derived from (6.1) are

6.1)

’(a"*a,,+ +a* 9. —im Dy =0,
(6k+l[ak+ + 6,:_1;0/‘_ + im IZI) = 0.

6.2)

The energy—-momentum-stress tensor, charge—cur-
rent vector, number—current vector calculated by
(4.9), (4.11), (4.12) from (6.1) are, respectively,

f:t -21_1: [(amtlxz)akt‘b - ‘pak*amt‘P] - amey

ks 1 O T
mF 2% [(am¥¢)a ‘l’ ‘pa am?\&]y

I = et (r — 270, + 270,09
+ (r — 270 + 270, ) P.ot Y + 2L,
nk* — :’:Jak*‘p_

6.3

The Green’s functions corresponding to the ma-
trix—differential equations (6.2) are

1
S, 272", 27 =_—f f d'p. d'p_
@ 2 ) @ -
____I___ Clpig(sf ¥mg’ S F)4ps_(af=—g/i—)]
X i(P _ mI) € ’

where P has been defined in (3.3).
For the set of matrices in (3.8), the Green’'s
functions (6.4) go over

(6.4)

+ - + - 1
Sl #7527 = s [ -

(P + mlI)
d4 . d4 _ 7‘;(
X '/;(u) P -7 bpu»pb— -+ m*

X e"[v“-(“ tea S Py bpi— (25’ 8))

(6.4')
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For the case when o** are given by (3.8) we can
introduce consistently the electromagnetic inter-
action by generalizing (6.2) to

2 - 3 6 . - 10a
Z {a“e "[57 - 1;, ¥y + 'LeA,,(r)] + 76"’
k=1

X [5‘3— +% a—‘} + ieA,,(r)] —im 1}¢ -0, (6.5)

where 22** = r*¢**** (k not summed).
If we choose a special form of ¥, namely ¢ = ¢(r),
then (6.5) goes over to

{g‘[s% + ieA,,(r)il - im I}x[/ = 0, (6.6)
where
o def Memit + o*7¢***  (k not summed),
gbgt + glgk — 2_)]1:1[.

The last equation shows that (6.6) is equivalent to
the Dirac equation and (16 X 16)-dimensional rep-
resentations of «*’s must be reducible.

Choosing another special form of ¢, namely ¢ =
x(r)e***’* (g.’s are integers), (6.5) yields

6.7)

4

h> {g_zk[ﬁ,; + ieA,,(r)] +ob &~ im I}x =0, (6.8)

k=1

where

cdef 4 gy

k= if
a, =o€ ok

—ae (k not summed),
Q,O!, + a-ao _2’7HI’

aid + ook = 0.

II

(6.9)

The corresponding second-order equation is

9:9:

(5 5l ) i) - 9
+f;_”‘_”F,,,} Zak ®

where

q"z + m21]x =0, (6.10)

F., ! 94, _ ?fﬂ
B gt art

Both (6.8) and (6.10) contains terms which reveal
slightly anistropy in the physical space spanned by
four r™s.

This concludes the discussion on classical fields
in complex space-time, and we shall give the quan-
tized version of the theory in the following paper.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 1 JANUARY 1966

The Quantized Complex Space-Time and Quantum Theory of Free Fields. II*

A. Das

Carnegie Institute of Technology, Pitisburgh, Pennsylvania
(Received 10 May 1965)

In this paper a covariant quantization of complex space—time is proposed. As a consequence of this
quantization each of the four real coordinates can take discrete values nil, and furthermore, meas-
urements of these coordinates are noninterfering with each other. Next the general theory of quantized
free fields is developed in the background of quantized space-time. As an example the case of com-
plex scalar field has been dealt with and it is found that the resulting Green’s functions are nonsingular.

1. INTRODUCTION

HE divergence difficulties in the quantum field
theory are as old as the theory itself. These

difficulties are temporarily avoided by formal re-
normalization procedures. However, subtraction of
infinities is not to everyone’s taste, besides such
approaches lack universal applicability. In recent
years this problem has again been side-tracked by
the dispersion theory which through ingenious efforts
of many has led to the better understanding of
elementary processes, especially in the field of strong
interactions. But in our opinion, the complete under-
standing of the microworld can only come through
the satisfactory solution of the classical divergence
problem which unfortunately still survives. The
present effort is to achieve this end. The basic idea,
which is nothing new, is to introduce a fundamental
length'”® or time into the physical theory in a
covariant manner. Attempts along similar directions
have been made previously either by introduecing
a microstructure in space-time*’’, or by assuming
nonlocal interactions® or nonlocal fields.””**

Despite these endeavors, no fully developed quan-

* This paper has been prepared under Research Grant DA-
ARO(D)-124-G-602, U. 8. Army Research Office, Durham.
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tum theory of field exists which incorporates the
concept of fundamental length satisfactorily. In 1960
an attempt to formulate exhaustively the quantum
field theory in the background of discrete space-time
where each coordinate assumed discrete value =tni
was made.”* There, serious divergences were elim-
inated in a mathematically consistent way. How-
ever, the partial difference equations which replaced
usual partial differential equations did not satisfy
Lorentz covariance, though the basic cellular space-
time structure was integral Lorentz-invariant.® There
seems to be no other way to formulate the con-
vergent, covariant field theory except by the quan-
tization of space—time with the introduction of
coordinate operators. To restrict the multitude of
possibilities, the following plausible conditions on
the quantization are imposed: (1) Measurements of
four real coordinates should be compatible or non-
interfering; (2) the eigenvalue spectrum of the posi-
tion operators should necessarily assume denumer-
able infinite number of values; (3) the quantization
rules should be preferably covariant under the com-
bined Lorentz and gauge (or, iso-) groups. Several
trials’® gave the simplest possible quantization sat-
isfying the above criteria as [Z**, Z*"] = I*4*'T and
resulted in the quantization of space-time lattices
in discrete values nll for each coordinate. Snyder’s*
quantization does not satisfy any of the above condi-
tions, and Yukawa’s'® quantization, although formally
similar to that presented in this paper, differs widely
in its subsequent development.

Green’s functions which are not vitiated by the
presence of any singularity, are arrived from the
study of scalar fields in this diserete space-time.
Moreover, the plane wave associated with a free

¥ A Das, Nuovo Cimento 18, 482 (1960); this paper con-
tains extensive references of works on nonlocal fields.
18 Under group

R3 ~ SUz: [EIU SV] = ZEI»"" Xu =
Ry X Ry [X*, X™'] =

4

*EEs,

2 abe a’bo!
e X0, ete.
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particle in usual theory, is replaced by a plane wave
damped with respect to distance, time, wavenumber,
and frequency.

IL. FIELD OPERATORS AND STATE VECTORS
IN HILBERT SPACE

Units are so chosen that i = ¢ = I = 1 and
all physical quantities are expressed as pure numbers,

Consider the inhomogeneous linear transforma-
tions

Z;Ict o ak* + al.chl*’ (21)

where a*; belongs to L,}. The group defined in (2.1)
possesses infinite-dimensional unitary representa-~
tions.’® Consider infinite-dimensional-produet Hil-
bert space H; iy = H; X H;;, where H; and H,;
are infinite-dimensional spaces'’ of representations
of the group in (2.1). The transformations (2.1)
induce in H;, Hyy, and H; ;; the following unitary
transformations:

‘I’f = UI‘I’I, ‘I,;I = UII‘I’II, ‘I’I’ = UI Yy I
Uz 7= (Uz X III)(II X Uu),

U;Ur = In U;IUII = III; U; nUr o

=Ipg=1I; X I, (2.2

where the vectors ¥;, ¥,;, ¥, ;y belong to H,, Hy,
Hy i, respectively, and I, I,;, I, ;; are identity
operators.

A vector ¥; ;; & H, ;; represents the state of a
physical system to an observer in certain frame of
reference. Fields are represented by linear operators'®
P (2Y X I, Z¥ X I;) which act in H; 4.
Z%* [= (Z%7)] are linear operators which correspond
to complex coordinates, and they act in H;. Now
a different observer in a new frame of reference
characterized by the transformation (2.1), may
either (1) ascribe to the physical system the same
state vector ¥; ;; and new field operators & (Z}" X
I, Z~ X I;p) or (2) describe the system by a new
state vector ¥4 ,; = U; ;,¥; ;;r and unchanged op-
erators &; (2% X I, Z7 X I;). Both methods
must be equivalent and give the same expectation
values for the physical quantities, i.e.

8 B, P. Wigner, Ann. Math. 40, 149 (1939). .

17 The cardinal numbers of Hy and Hy; are, respectively,
N0 and N¢. The Hilbert space H; 71 goes beyond the classical
limits. cf. J. von Neumann, Mathematical Foundations of
Quantum Mechanics (Princeton University Press, Princeton,
New Jersey, 1955).

1# The field operators in general are unbounded, though
there exist infinite number of vectors like ¥; ;7 & Hy g7 such
that ||®7 7%y ]l < w, (Z7" X Iy = (Z/F X Ip,
Zt X Inn 278% X Ingy Zp4 X 1)

s o1y B 0¥ 1) = (W) 1, B3 11V} )y

where (¥; ;;, xr 11) denotes the scalar product be-
tween two vectors ¥, ;; and x;;; in H; ;5. From
the last equation it follows that

8125 X Inp, 21~ X In)
= Uru®ul X L, Zi X I)Ur r. (2.3)

The field operators &};7*"(Z% X I, Z° X I.;)
also transform like tensor fields under (2.1), so that

‘b;k}}+..—..(Z§+ X III, ;- X III)
=a' ®7 T2 X I, Z7 X Inp)
= U; u®it 728 X I, 25 X I)Us 11, (2.4)

Expectation values of the field operators transform
like classical tensor fields,

(¥f 12, ¥ 1027 X Iy, Z7 X I)¥} 1)
= (¥; 11, ¥ 1:(25 X I, 217 X I )% 1)
=d, - (¥ 11 7 iZy X Iy, Z7 X Ii)¥: 1)

All the representations of U, are one-dimensional
and cannot be generated by similarity transforma-
tion like in (2.3). Thus it is not necessary to con-
sider explicitly the group U; in (2.1) and the co-
variance under U; will be obvious from the notations.

Now, the infinitesimal form of (2.1) and the cor-
responding unitary representations are

ZiF* = &I - (84 + &0z,

U: = Ix + i(EHP Ih+ - ek—P Ik-) + %ecbszaw

U = Iy + i€ Prpus + fk_PHk—) + % € Stras,

Ur a=1IX III + i[5k+(PIk+ X In + II X Pm.+)
+ ék_(Pnc— X In -+ Iz X PIIk—)]

.

+5 S X I + I X Sura),  (2.5)

where |¢'*], || are small positive numbers and the
linear operators Py,,, S;. act in H; and so on.
From the first equation in (2.5),

ZP* — Z1* = &+ 3 a2l
Also from (2.3)

ks b+ trrk s b+
i —=Z =UIZIU1"Z1 =

(2.6)

—ie*[Pry, Z5*]

— " [Prs, 23] + 5 €[Sty 257,
@7
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Comparing (2.6) and (2.7) we obtain
(Pr., Z7*] = 18514,
(Pn., Z1') = Oy,
[Stass Z1°] = 8. 1am1mZr ™,

2.8)

where 0; is the null operator acting on H;.

Now under the infinitesimal unitary transforma-
tions the field operators transform as in (2.3), so
that the local variation is

def -
07 11%1 11 = & 1(Z3 X Iy, ZF X 1))

— &' 1(Z7 X Iy Z7 X 1),
= 3¢ [(Pn+ X Iy + I; X Pins), ¥ 11
+ 1 [(Pr- X It + It X Pin-), ®i'11)

+ 5 @[S X T+ Ir X Srras), ¥ (29)
But from tensorial transformations we have
O u®r'n = %éabsfxi..‘l’i'n- (2.10)
Comparing (2.9) and (2.10) we have
[Pre X In), ®:'11) = —[Ir X Prixs), 111, 2.11)

[(Sras X Imr), ®:'11)
= —[(I; X Siras), ®i'1r] — 184..%5 11

IOI. THE QUANTIZATION OF COMPLEX
SPACE-TIME

To quantize space-time we shall now make the
following ‘“‘ansatz’’:

k .
I* = =F1'P;*1

(3.1)

Stas = iZ;le;al'

Inserting (3.1) in (2.8) we obtain
227, 257] = I 3.2)

(2}, Z1*] = 0.
Substituting (3.2) into (2.11) we get
[(; X Pinps), ®1'01) = £il(Zne X 1), ¥i'nil,
[(; X Sira), ®i'11])
= —i{(Z1eZ1s1) X Iz, ®1'1s] — 98, . B1' 1. (3.3)

These expressions may be considered as the defining
relations for the total momentum and angular mo-
mentum operators Iy X Pipn., It X Sia of the
field ®; ;.

To obtain the physical consequences of the quan-
tum rule (3.2), we write

Z = e ®"R: ZF = R%'®™  (k not summed).
The results of measuring Cartesian coordinates of

any physical object in space-time are given by the
eigenvalues r* of the operator R*, and these are

=2, 2=01,2:-r 0. (34

The measurements of four positional coordinates can
be performed simultaneously. But there is an un-
certainty principle

AR*A®* ~ 1/2(n*)}, (k not summed), (3.5

where AR*, A®" are, respectively, the uncertainties
in the measurements of ordinary and electrical (or
internal) coordinates.

We shall denote an eigenvector of the operator
R% by |(n*)} and its conjugate vector by ;(n*)}|, and
it follows that

B | mh} = (M)} | (M,
Z: | @) =@+ )| (0 + D,
Zr | ) = @) | (' — 1),
% = | @ — 1,
Zy | ) = (' + D} | (2 + D,
L@ | mH}] = 8,m (% not summed), (3.6)

Now the notations are elaborated. I} X Z2* X It X I}
is the full notation for Z}* and so on. For the
simultaneous eigenstates of position operators R}
R}, Ry, Ry, the notation | (n)} = | (n')} X | (n*); X
| (n®)} X (n*)}is used and equations like R? | (n)} =
(n%)} | (n)} would really mean

(I: X It X Bf X ID) )} X |0} X ()} X ()}
= )} |@)} X )} X () X (L.

Now from (3.6) it follows that
Zr @ =0, @) |0} =0,
L@ (Z') [—@mHi] = o,
L) |8;10(Z7 X I, Z7 X In) |—(m)i] = 0.

The meaning of equation (3.7) is that physical effects
in positive lattices cannot cross the origin to negative
lattices. An observer measuring the lattices given
by (3.4) and also verifying (3.7) might apparently
conclude that the microstructure of space-time
shows preferred origin, preferred axes and also pre-
ferred positive or, negative cones. He may wonder
what happened to relativity! But this apparent

3.7)



COMPLEX SPACE-TIME. II 55

contradiction may be resolved in the following way.
To another observer the eigenvalues of the position
operator R}* = UJR:U; are the same as in (3.4),
so that the measurable microstructure, after all,
remains invariant to all observers.

IV. THE LAGRANGIAN FORMALISM

Let us define the Lagrangian operator L; ;;
constructed out of the field operators &;;, L JA
and their first commutators [(Z}* X I.;), ®;'il,
[(ZE* X I;), ®) ;] in the following way:

def
1 11 = L{®; 1, ®1'5, (25 X It), ®1'nl,

[Z:* X I), ). (@1)

We define the Action operator as™

4
Ay d;f E I:I(n)ﬂLI Ir l(n);:l‘ (4-2)
The variational principle states that
0A; ¥y = 0y, (4-3)

for all ¥,; € H,; with ||¥]| < «. (4.3) yields the
following Euler-Lagrange operator equations®

aL
Zk+ —_ ]
[( 7 X Iu), (Zy X I, &1

+ e . Sz, o0

oL
0P;' 1z

" oL ]
[( 7 X Tu)s Gz, o]

. oL _
+ [(ZI X I, al(ZE X Iy, @;-}1]]

oL
- =t
OP; 71

= 0 I1)

4.4)

= O 11.

We shall now derive the Noether’s theorems from
the invariance of Lagrangian under (2.5). For this
purpose let us define all possible variations of the
field operators, namely

18 Trace is invariant under similarity transformations and
replaces Lorentz-invariant space-time volume integration;

IEDIPID IS

2 Cf, C. Gregory, Phys. Rev. 91, 770 (1952); 92, 1554
(1953).

.. def
Or i®i’ o =

Ut u®'tUs 1t — ®'nr
= —il{*"Pne X It + It X Pinps)
+ € (P~ X It + It X Prp)
+ 3 (Stas X Inr + It X Sura)}, @11l
Su®i s = (I X Ui 1l X Up) — iy
= (" Prs + € Prc + 3 S1as) X Ity ®i'11]
+ 3" 85.. %5 1,
8:12(Z7* X Ip) = Or 1,
8r®:’ 11 o U; X Ii)®: ' 1u(Ur X Inp) — &i'ns
= —i[("*Pns + ¢ P + 3¢ 8ra) X I, &5l
Now the invariance of the Lagrangian operator
implies
Orzor = Ur by iU i = L r = 8¢ rilig e
= 8&L; ;1 + Ly 1r = {—i[("*Pres + € Pro-

+ %Gabsrab) X In, Lr 11]}

4.5)

oL oL

+ {Eaj_if 0n®; 1 + 3 EZ 511‘1’;71

+ 6L1 Ir [(ZH- X I ) 5 @"I]
(Z: X Ip), ®i'rr] ' )y ou®rn
aLI Ir - .

+ (Z;™ X Ip), <I>I"H][(Z’ X Itp), 6% 1]
3Ly 11 - .

+ 5T X Ly, a1 @F X Iy bu®rid]
aLI Ir _ ' }

+ (Z;” X Iy, cI:c;'I'I][(ZI X Itp), 611%r'11)

(4.6)

With (3.1), (4.4), and (4.5) the coefficients of ¢** in
(4.6) yield the conservation of the canonical energy-
momentum-stress tensor operator in the following
way

(27 X I 1), Tt iriemsl

+ [( ’}+ X Iu); T, m;nm] = 0 IIy
T d;f dL; 11
T Ik o[(Z* X In), ®i'ul

.. OL; 11
X [(Zlmt X In), ®; 11] + 0[(Z§¥ X In); ‘I’;'h]

X [(Zimse X Ip), ‘1’;'}1] — MmLr 11,

d_ej BLI I .e
TI ITktm+ — a[( :* X III), (DII"II][(ZIM* X I!I)) q)I II]

aLI Ir

AT X Iy 8l [Goms X Iy Bl (4D
I ’

+
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Similarly, the coefficients of ¢** in (4.6) give the
conservation of angular momentum tensor operator
in the following form

[( ;+ X Iu); Jr IIabk+]
+ [(Zz— X In), JI IIabk—] = OI IIy

J dif ('JLI Ir
I MHabks = a[(zt* X 1), i1

X ((Z1Z1a) X Liry ®i11) + Sii. . ®i'mr)

aI’l’ Ir
6[(Z§* X III))

=+ SQE..‘I’;'}I} + [(1aZ1y) X Ip)Lr 1.

By evoking invariance of L; ;; under U;, we can
derive the conservation of electrical charge—current
vector operator as following

[ZF X I, G mmee] + W25 X I, Gi 1] = Oy 11,

t.. {[(Z;[bz;al) X I, Q;.I.I]
®; i1

4.8)

. def .| 0L 4r ;
+ 3 iz I 3 2 . @
I 6[6[( ks X I, @i 11]{7 o

— (Zn- X In), @1 ulZi” X 1)
+ [(Zne X 1)), @) Z1* X 1)}

__ 0Ly .
a[(Zt* X Iny), ®r'1]

- [(Zn- X I, ‘I’;'h](zz_ X I
+ [(Zns X In), 83

{ T(I); I

X (Z§+ X III)} + LI II(ZIki X III)]' (4'9)

If we demand invariance of L; ;; under infinitesimal
phase transformation
Bir = & e’ o~ ®;' (1 + ia),
t.. t.. —ia .. .
b1t = &' 100 o CIJ; a(l — ).

Then we obtain the conservation of number-flux
vector operator as,

(Z:* X L), N1 ] + (25 X In), Ni i)

= 0, II,

def | L
N:iime = 2121[—1"‘

&
o[zt X Ip), ®;'11) r

_ oLy . L3 :|
al(Zk* X Irp), ®r'11] i

From (4.7), (4.8), (4.9), and (4.10), we obtain the
expressions of the total energy-momentum, angular-

(4.10)

momentum, charge, number operators of the field as®
def

Pips = (77«4 + 1)i Z {(1("4 + 1);,

@)} Tasrs [@)?, @) — (0",
(n)*[ Trrra-es l(n)i; (n‘l + 1)%)1};
(' + 1 2 (Gt + 1},

(n)*l J1 11apas |(n)*, ("f)*f) - (1("4)*:
(n)*l Jr traba l(n)%; (n‘i + 1)*1)}:
Qu = @'+ D X (G0t + 1,

n

@* Gr rras |@*, @)
— (@, @ i - (@ @ + DY,
Ny f (n4 + 1)} nZ {(I(n4 + 1)§,
(n)*[ N 1 (@)}, (n*)?) - (,(n‘)*,
@} Ny - [@)F, (0* + 1Y} (4.11)
These quantities do not change with time lattice
provided there is no flux of the field across spatial

boundary lattices. Incidentally, P;y,., Srras in (4.11)
should be identified with those occurring in (3.3).

def
Sllub =

V. THE QUANTIZATION OF COMPLEX
SCALAR FIELDS

We choose the example of complex scalar fields
to demonstrate the formalism developed in previous
sections. The Lagrangian operator in this case, is
taken to be,

LI = ‘f)u[(Z’;+ X In), q’; n]

X (27 X Ip), ¥ 5] + 97 u®r . (5.1)
The field Eqs. (4.4) derived from (5.1) are
mal(Z X In), (Z7 X In), @7 1)
— m*®; ;1 = Oy 1. (5.2)

Taking the expectation value of (5.2) in the state
|n; we obtain the following partial difference equa-
tions for the field operators ®; ;;

def

(w + m)3;0H) = @n' + 1)@ 0)}

— (@ + De5(' + DY, @), @), ()]
—n'e5ln' — DY, %), &%), ()]

+ @0’ + 1)@}

— (" + Des@), @ + 1}, (0%}, (1]

")} = )] X @)} X |
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— AN, (0 — DY, (), ()] Srra = 25 (=00, @] (@1 X 1), ¥ 1]

+ @0 + 1)@

— @ + DailH, 0, (° + D, (Y]

— 0@}, @), 0° — DY, ()h

— (20" + D&i(nt)

+ (' + D@}, @), @), @t + DY

+ n'en")}, @), @), @' — 1}

+ m*dHn) = Oy, (5.3)
where

(pl*l(n!) = ‘I’I*I[(nl)*: (n2)%: (na)i’ (n4)i]
def

X [(ZrZia) X I, @1 1)
+ (Zrn-) X InLr ol @ 17)
+ (1, @} [(Z7 X L), %7 o]
X [(Z7wZia) X I, @11
+ (mieZnys) X InLy ol @)}, 01)],
Qi = —ie nZ [—GO, (n)*l ([(Z§+ X Ipp), &7 )

X [®7 ir — [(Zn- X 1), @1 0l(Z;” X In)
+ [(ZII-Q- x III)J Q;II](ZII'*- X III)]

. - G L; 1/(Zy X I ), 1
S G| 7 B X Ty 75 X Tl G+ r e X Dl @, 1)
. + (1, (n)” (Z7 X Iip), ¥ 1)
and physically represents the field operators at the . . _
space-time lattice (n')}, (n®)}, (n®)}, (n*)h. X [®7 11 — [(Zn- X Ip), ¥1 1dZ7r X 1),

From (4.11) and (5.1) we obtain expressions for 4 (Z11e X Iz, 002 X 1))
the total energy-momentum charge and number

operators of the field as (calculated at »* = 0) + L; 11(Z1er X I))| @)}, 0],
P = 2[00, @) (21" X In), @} ) Nu = =i 22 1=00, @] (2"
X W X 120, 3.2 = mala ) 8, 19 X L), 81 p18°| €0, 1) + 1, @) [E
+ (1, @} [(Z4 X Iy, & 2] X Iry), ®F 1%z | (@), 0,)]. (6.4)

Now let us make slight digression to consider the
partial difference equation

(m + m)2@) = 0, (.5)

X [(Zn- X I), &7 1] m)?, 1) where the operation m has been defined in (5.3) and

3 i - ®(n?) is a bounded function of four real discrete
+ G, @] (@ X L), @7 a] variables. The double Green’s functions eorrespond-
X [(Zn- X L), ®F 1] — nals )| ()}, 091, ing to (5.5) can be defined as following

X [(Zre X Inp), @ 11| @)}, 0,)],
Py = ; [—-(0, (n);l [(Z;+ X I, &7 1]

G, (mh & f}f f  dky dky dky dk,

g bkt kRO T (1) Ls (ko) Lins(K) Lo () L s (1) L s () Ly (i) Lo (K
k1+k2+k3—k4+m2 !

X (5.6)

where L,(k) is the Laguerre polynomial and ¢, defines different contours in the complex k,-plane
as shown in Fig. 1, one singularity being situated at k, = k&, - k&, + ks 4 m°.

The Green’s function G[(r)}, (m)}] corresponding to the closed contour ¢ is homogeneous and others
corresponding to open contours are inhomogeneous and they satisfy, respectively,*

22 This can easily be seen from the recurrence relation

(2n 4+ DL.(k) — (n + 1) Losi(k) — nLpy(k) = kL.(K)

and the orthonormal property

f € FLu(R)L(k) dl = 8m; Oim = 81t Ourms Onoms Onome-
]
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(m+ m’)G[(n)*: (m)*] =0,
(. + mn)G(a)[(n)*: (M)*] =

6.7

@
o

It can be shown that these Green’s functions are nonsingular. For subsequent use we note that the

homogeneous Green’s function is

Glnt, (mh] = —2rie™ f [[ b, aby b 2055 Lo L L)

X Lu(ky + ks + k3 4+ M) Los(ky) Lns (ko) Lo (k) Lne(ly + k5 + ks + m?),

m?®  md S tos Seto—r 71

--Ze 3 5

3=0 Sg=0 S3=0 S4=0 ¢1=0 03=0 03=0 g¢=0 r=0

+ 8 oz () (5) (o) o) ) o) e

X(Sl+o'1+S4+0'4_"S—1)!(SQ+0'2+S—'1)!(S3+0'3_'t—‘l)!,

Before we pass on to the Fourier expansion of the
field operators we notice

et‘ [pat (218 tXT11) +pa~(Z 1%~ XI1ID)]

= 6‘ [Pa=(Z 13~ XII1) +pa+(Z 10 +XI11)}

— o dlIpiit+Ipalt+1palt+1pel?]
=¢e

i Zre X1 iva—(Z18~XI
X e-pu( %X u)_e-m (Z1o=XI1n (59)

where p,.’s are ordinary c-numbers, and we have
used the Baker-Hausdorff theorem.** Moreover from
(3.6) we can obtain™

(x(nl)l girer(ze +x1mem-(21°-xru) Kn);)

= Ll’(lpl lk)Ln'(|p2 IB)Ln‘(lpa lz)Ln‘(lp4 lz)III' (5 '10)

8 A. A. Maradudin, E. W. Montroll, and G. H. Weiss,
Theory of Laitice Dynamics in the Harmonic Approximation
(Academic Press Inc., New York, 1963).

# From (3.6).

(Z)" |
=[x’ — 1) ---

(21")" (")}
= [+ D+ D -

80 that

(|2 =@ @ geyezy

(' —r+ DI (' =},

+ 9P (0" + 9},

o )

@ —-r+1

ZE 21+) 121) -

X (o' —r+1)---(n —r+ 915,
= n'l ,Z(_ri()z__(r_li% = Ln‘(lpllz).

ZZZEZEZ Z E(—)(S1+01+82+02+Sa+a’3

i=

=) 50

|GTm*, (m]] < .
(5.8)

We assume that our field operators possess Fourier
transform

&7 11(Z7 X Ity Z7 X 1)
= o | [ @ dvl X Bitp, po)]

X eii[?rl-(ZI" +XIII)+D-—(ZI“'XI”)]. (5.11)
Because @7 ;; have to satisfy (5.2), we must have
BI*I(pﬂ p—)

= 21 8(—1"Pasps- + M)A+, p-).  (5.12)

The expectation values of the field operators are

QI*I(n*) = (I(n)il ‘I>1* Ir I(n)*)t

- (%%f f,m d'p-Af(ps, p-)

X 5(—77“17”17»- + m2)e-—](lmI'+Ip.l‘+|ml'+!m|')

X Las(|p1 ") Lar (1921 Ls (I5|* 5,  6.12)
by virtue of (5.9), (5.10), (5.11), and (5.12).
CV
c
N
e 3

AR

C‘

F1a. 1. Complex kyplane.
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Denoting
Pis = |4} e** and o* = o[ + Ipzl’ + t?ata + m?,

{5.12') ean be rewritten as

8”§ ~sm*f

X fdeéAItI(pt’we*\‘ﬁa)e~(iaul’+iml’ﬂm!’)

oi(nt) = [ @,

X Ly (|p, Iz)LM (Ipz }2)}5»* ( Ips Iz)La«(wz) .

Now we postulate the amplitude quantization

[All(paky we '0‘); An(P:e,w e*‘w] = Iu&(lpu
X 8(1pas — 2821 8([pse — P31, 05,

[A;n A;I] = [A;n A;z] = Oy,

. x 2x
fa fo (0, 0) 48, d] = ().

(5.13)

- Pls l,)
5.14)

As the consequence of this and (5.13), (5.8), one
obtains

[#7(nh), &5:(nh)] =

{850}, ()] =

The quantization (5.15) is consistent with field
equations (5.2) because

0rr = [(m + mD®50Y), 35(n'h)]
= Fil(m+ m’)G[(“)gy (n")i] = O,

from (5.12) and (5.7).
Straightforward calculation for energy and number
operators from (5.4) and (5.13), yields

Prior = Hire = o [ o [ o+

x [[ a0, a4 (p., vt

iLLGl)}, ()1, (5.15)

‘ﬁ;}(ﬂ;); q’?s(n’*ﬁ = Oy

w¥

d’p, d’p-we”

XA;}‘(p*, we*io‘.)"l"A;](p*,&)eéi&‘
X A}}(p*,we*”")}(ew‘ ___81‘9")80‘“““‘"."’
g f o ety

X f f a6, do[AL(p., we**™)
XA;I(P*)we*ih')e-“w‘-—h') +A?;(p*,w6
X A;I(p*, weﬁl'o")(z - e‘(oa“"ac'))]

X (e-t'a. — e-:‘v!")eu*c‘.("”h')

*ih)

¥

W=y ] [ -

X [AII(P*, iw‘)Au(Pg:
+ A;I(p*, *‘s‘)AII :H

pq- d p*wze’»‘ f da‘ d@{

we*“’")(l —e
tih')(l —e

wi(ﬂ;-—ﬂ"))

x'(h-h’))].
{(56.16)

The operators H;;, are not ‘gauge-invariant’ and
as such do not correspond to observables. To obtain
the ‘gauge-invariant’ energy operator for the com-
plex field it is noticed that the field Eqgs. (5.3) are
derivable from the action operator,”

4 4
Ap = Z Z ﬂ“nb

a=31 bwi

ALBH ) AlBT (nh)
(5.17)

Here and subsequently the summation convention
ig suspended. Following the Lagrangian formalism
developed™ for the field operators satisfying partial
difference equations one arrives at the energy-mo-
mentum-stress operator

Py
- m ‘I;‘H@”-

4
Th.. = 2, 1°[(n ALSH)(AE'®T)

am]

+ (AEy I‘I’;—I)(nbA;q);f)
+ 3, A00,.97)(AE; o)
-+ %(Aﬁ;‘@;})(%gfa ‘I’;:)} - 5b oLt 11,

{6.18)
bz A(,T?I e = “"“‘(A @11)(A E @;})
- %(AcEcq)II)(Ac(I);I)'
The energy operator is
H n(n ) o Z T?r.‘z[(n)i, n4]
= 2 [ @ pl Nulp o' @)
+ 0 LEVEEE], (6.19)
where
N {p.) o AIIAII) L(-a)(x) o Zo ("‘1)’”“
% s —a+ 1) o
min—m)ITm —m —-a+1) ’
and
[ & of 0.)
= f f f d ip|* d Ips|” d lpsl® f@+s p-)-
BES - Y feen ma 1, oe0), A 2

(E. — 1) A’f‘“‘“A«E*‘f
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From (5.19) it is clear that observable energy
of the field will not be exactly conserved.

Now the asymptotic approximation for Laguerre
polynomials are®*

L) ~ T
X cos [2(n + D k| — 1]
Iklz
+ 0[2(1& + 9 ] ’

~ Jo2m 4 B k] 4+ 0™Y.  (5.207)

From (5.20) it is evident that the plane wave asso-
ciated with a free particle is damped with respect
to distance, time, wavenumber and frequency. The
ratio of intensities of plane waves associated with
a definite number of free particles in two different
wavenumber states is

I _ Iptl ol Ipsl (pil® 4 1psl® + Ipsl® + mB}
I o ool los| (a” + 0" + [pal* + m?)?

in contrast to I/I’ = 1 in the conventional theory.
From the asymptotic approximation of the La-

.8 G,_Bangone, Orthogonal Functions (Interscience Pub-
lishers, Ine., New York, 1959), pp. 348.

Szego, Orthogonal Polynomials {American Mathe
ematics Society, New York, 1959), p. 197.

(5.20)

guerre polynomials one can obtain the approximate
energy operator H; from (5.19) as

H_u("#) ~ '('fi‘}”g j‘ d3 !p[2 NH(P*)W
X (feos [2(n* + Do —~ $1}*
+ {eos 2(n* + Do + 1117,

where we have chosen Ny;(p.) = 0y, for o® > 2Hn")1,
Averaging the rapid fluctuation of energy with
respect to time, we obtain from {(5.21)

(5.21)

ol N(—%—_g f & Ipf* Nulpdo.  (5.22)

This is almost the energy-frequency relation of
Planck excepting two differences. Firstly, energy
depends slightly on the direction of wave-propaga-
tion revealing anisotropy of lattice structure. Sec-
ondly, energy decays slowly with time. From this
result and also from the damping of wave with time
as in (5.20), it seems that the natural universe will
tend to disappear into nothingness in course of time!

If one writes r = (n)?! for large n and substitutes
{5.20') into (5.8) then Eq. (5.8) of the classical fields
in paper I is obtained, and this shows a correspond-
ence between unquantized and quantized field
operators.
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It is shown here that if we demand the covariance under general circular transformations (rota-
tions in complex planes), the electromagnetic potentials can be geometrized as the affine connections
necessary for such covariance. The geodesic hypothesis yields the Lorentz equation of motion with

an interesting correction term.

L INTRODUCTION

HERE have been many attempts' to unify

electromagnetism and gravitation in a single
geometry. The more notable ones are due to Weyl®
(with the nonintegrability of length), Kaluza® and
Klein* (with the fifth dimension) and Einstein® and
Schrédinger® (with nonsymmetric affine connec-
tions).

The basic ideas behind our approach are the
following. Four straight lines passing through the
origin in four complex planes can be characterized
by arg z** = const. Such lines replaced the usual
Cartesian coordinate lines in our previous papers.
Instead of straight coordinate lines let us consider
four continuous, differentiable coordinate curves in
complex planes which can be characterized by
arg 2 = x(r). If we now demand the covariance
of the physical laws under transformations’ from
one set of such curves to another, the necessary
affine connections and Riemann-type tensor could
play the parts of electromagnetic potentials and
fields. Moreover, we shall interpret the sum of
angular momenta in complex planes as the electric
charge. The resulting theory is quite simple.

In our approach one will recognize some shades
of ideas occurring in previous attempts by others.
For example, the unimodular factor which will rep-
resent circular transformations corresponds to the
gauge factor in Weyl’s theory. Electrical or internal
coordinates arg 2** have similarity with the fifth
dimension of Kaluza’s theory. Ours has the closest

* This paper has been prepared under Research Grant DA-
ARO(D)-124-G-602, U. S. Army Research Office, Durham.

1 V. Bargmann, Rev. Mod. Phys. 29, 169 (1957).

2 H. Weyl, Sitzber, Preuss. Akad. D. Wiss. Phys. Math.,
4653 gIl‘9 1I§a)miuza, Sitzber, Preuss. Akad. D. Wiss., 966 (1921).

4 Q. Klein, Z. Physik 37, 895 (1926).

8 A, Einstein, Meaning of Relativity (Methuen and Com-
pany Ltd., London, 1951).

¢ E. Schrodinger, Proc. Irish Acad. 51, 163, 205 (1948);
52, 1 (1948).

7 These transformations are characterized by 2+ =
zkEexin(r),
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resemblance with the general spinor analysis as
developed by Infeld and van der Waerden.® But
in their formulation there are no electrical or internal
coordinates, nor there is any explanation of the
electromagnetic interaction of charged scalar fields.
Our approach is free of these criticisms.

In this paper we have not exploited the completely
general covariance in the complex space-time and
possibilities along the same direction have been
mentioned in concluding lines.

II. GENERAL CIRCULAR COVARIANCE AND
ELECTROMAGNETIC FIELDS

Let us consider the complex space-time coor-
dinatized with z**. We shall restrict the range of
arg 2°* to [0, 7), so that mod 2** can assume both
positive and negative values. Furthermore, for the
sake of simplicity we shall assume arg 2'* = arg 2°* =
arg 27 = arg 2'* = 4. Writing 2** = r*¢**’, we
shall consider the covariance of the theory under
following transformations:

ri

6 = 6 + \(r),

where a; is an element of L, and A(r) is any con-
tinuous, differentiable, monotonic function of four
real variables (r) %f (r', 7%, r®, r*).

In the complex space-time the obvious generaliza-
tion of the Minkowskian line element is

d82 = Nz dZH- dzi_

= n.(dr’ + ir' do)(dr’ — ' df). 2.3)
Though this real line element is invariant under
(2.1), but it fails to be so under (2.2). Therefore,
we generalize (2.3) to
d82 = ‘f],','[dri "l‘ ir'(d@ + A,,(T) drk)]

X [dr' — r'(do + A.(r) dr™)], (2.4)

8 L. Infeld and B. L. van der Waerden, Sitzber. preuss.
Akad. Wiss, Phys. Math. Kl. 380 (1933).

(2.1)
(2.2)

=a.r,
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where the functions A.(r) of four real variables are
assumed to be of class C,.

The line element (2.4) will be invariant under
both of (2.1) and (2.2) provided we ascribe the
following transformation properties to A .(r)

A™Mr) = %A,
Alr) = Ar) — [9N7)/6r],

corresponding to (2.1) and (2.2).
For the equation of motion of a particle in complex
space-time we shall postulate the geodesic principle

8fds=0.

If we parametrize the world-line in the complex
space-time by 2** = 2*(s), then (2.6) is equivalent
to the variational principle with a Lagrangian

L= (%)mﬂn‘i[i"i'i + Ti";(a + Akf”k)z]: 2.7

where m is a finite constant and the dot denotes
the total derivative with respect to s.

Equations of motion derivable from the La-
grangian L are

(2.5)

(2.6)

mi"- = m[A; % (n,,ir”r’(a + A,,'i'"))
+ r'r (9 + A.")

X (%74.—' - ?;;1 ) + (6 + A )zr’jl 8

%[mm,.r‘r"(o + A4N] = 0.

The integration of the last equation yields a
constant of motion

q = mn.-,-r‘r’.(a + Akj'k), (2.9)

which corresponds to the sum of angular-momenta
in complex planes. Substituting (2.9) into (2.8) we

have
;oo 4 (04; _ 94\, (q_)’__r-_,
= (ar‘ ar' + m/ (qr'r®)’

This equation resembles the Lorentz-equation of
motion except the last correction term, provided we
interpret m, ¢ as the mass and the charge of the
particle, and A ;(r) as electromagnetic four potential.
The physically significant fact from (2.10) is that
if we reverse the sign of the charge in a given
electromagnetic field, the acceleration will not be
exactly reversed. Also, all charged particles will tend
to move away from spatial origin even in absence
of electromagnetic fields.

(2.10)

For the energy-momentum relation we can ob-
tain from (2.7)

Pd;fa_e_

7 mi; -+ qA,,

(2.11)
2
(P — qA)(P; — q4) = m* — L.

7].','7"7',
Under transformations (2.1) and (2.2) the field
quantities transform like

(P’i’...+’...(zl+, z;—)

= a:; Ve ei)\(r) e ‘pl‘...+...(z+,z—).
Therefore the covariant derivatives should be de-
fined as®

+ efa(p

Pk = 5 F =+ i4(")e", (2.12)
where A,(r) transforms like in (2.5).
From (2.12) we have
Pira = £iF0%, (2.13)
where
dot 04, 94,
F., = P e (2.149)

The quantities A,, F;, are analogous to Christoffel
symbols and Riemann tensor, respectively. We can
obtain Maxwell’s equation from the variation of the
square Lagrangian L= (})F,,F* together with (2.14).

III. GENERAL COVARIANCE AND ELECTRO-
GRAVITATIONAL FIELDS

In the complex space-time coordinatized by 2** =

[} . .
r*e**’, we shall now consider the covariance under

transformations
=),
= 0+ ex(r),

where ¢ is a constant and the functions r'(r), A(r)
of four real variables are of class C..
Under (3.1) tensor fields transform like

¢n‘..+..(z,+, z,—)
ar’
= 37-" . e

3.1)

I

eo‘s)\(r) ..

. ¢i..+...(z+’z—). (3.2)

The covariant derivative of ¢‘*(z*, 27) with re-
spect to r* can be defined as

iedef o't

¢k— k+rk:€0; ¢';7==

TS, di‘{ }+ ied’; As,

® Needless to say, (nije*te’™ ) = (8/9r%)(nije*te).

6 - -
‘%‘ 4+ Tue' ",
(3.3)
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where {;;} are Christoffel symbols constructed out
of the metric tensor'® g;;(r) and A,(r) transform
like in (2.5).
From (3.3) we obtain
Pitilke]l = P,‘-,- kePi+s

i
Pi~ilkel = P.i kePi—)

;  detdTi, AT}
P.i ke = ark - arek
+ I‘;,P:k - F?kria = ng ke ie‘sfiFku (3'4)

where R’ ,,, is the usual Riemann Tensor constructed
out of g;;(r) and F,, has been defined in (2.14).
The P*;,, tensor has the following properties

Pijow= —Pire, Piine = —Pai key (3.5)
Pfih ;m+Pfiam;k+Pf5mk e = 0.
The possible contractions of P¢,,, are
Py Pl = Ry + ieFy = Py,
T 2 Py = —dieF,, = 7, (3.6)

PYP,=R=P r=1" =0,

(Pkm +Pkm - 6{‘mP);k = 0-
The electro—gravitational field equations should
be derived from any one or linear combinations of
square Lagrangians'!

F 1':'_” —_ ik 3 2 ik .
I’ = P'P,; = R"*R;, + &F"F,,, 3

L" = PY*P, ., = R"*Ri; . + 4°F"F,,.

It is already known'® that the field equations
derived from L’ or L” contain the Schwarzchild’s
field as one of possible solutions. However, the
Nordstrom—Jefferey—Reistner solution is not obtain-

19 (gizpttei™) e = (8/0rF)(gsjetteiT). |

1 of, Reference 2; W. Pauli, Z. Physik 20, 457 (1919);
C. Lanczos, Rev. Mod. Phys. 29, 337 (1957).

1 A, 8, Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, New York, 1930), p. 142.
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able from the same. These statements will be verified
in the following. In case of the spherical symmetry
if we choose

g =1+ 2V(p), g = —Pz;
F* = Q/Pz;

then field equations derivable from L, for example,
boil down to

V!V 4 4pVIV — PV 4 AL+ 2TV
2 2
—ayr -8 BT Mg,

-1
—Ju =

(3.8)
J3zs = '—P2 Sin2 0,

; . 3.9

where the prime denotes the differentiation with
respect to p. It is easy to verify that for ¢ = 0
we can have V(p) = —m/p as one of solutions
of (3.9). But for ¢ # 0, we cannot satisfy (3.9)
with V(o) = —(m/p) + (k/p’)-

Before coneluding we should remark that we have
not considered the most general coordinate trans-
formations in the complex space-time (coordinatized
by z* and 2* = 2°). These are

ra

2% = 2%z, 3), 2°=2°%,2).

Correspondingly the line element that should be
considered is

d83 = gabdzadzb + g.ﬂ;ddeZs + gabdz‘idzb‘,
Jab = Goay Gat = Gtay Gav = GJoay
which contain 36 components of the metric tensor

and may consist of many other fields besides electro—
gravitation. The matter is being pursued further.
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It is shown, for a certain class of analytic potentials, that the previously reported result

AR, B) —==> 1/BV(£ME), Re X 2 0,

where the sign =+ is chosen such that —#/2 < arg &= (A /k) < 7/2, is valid also for Re A < 0 except
for a discrete set of points on the negative real axis. The result holds for arbitrary complex k& = 0,

finite or infinite.

1. GENERAL CONSIDERATIONS OF
ASYMPTOTIC BEHAVIOR

N a previous paper,' hereafter referred to as I,
we discussed the asymptotic behavior of the
scattering amplitude in the variable A = | + %
for a wide class of analytic potentials (see Appendix).
The principal result was
A\, F) ;f,:)kl V(ENE), TRer>0 (1)
where the sign =+ is chosen such that \/k is in
the region where V(&N/k) is decreasing, i.e.
—7/2 < arg &= Mk < =/2. The purpose of this
note is to show that, under certain conditions, Eq. (1)
applies also for Re A < 0.

The evaluation of the asymptotic behavior of the
scattering amplitude is based on the work of Langer,’
who considered the asymptotic solutions of the
equation

W) + [Ne'(@) + 2(@)u) = 0 @

where ¢°(2) and z(z) are arbitrary holormorphic
functions of z in some region G containing the
origin, and ¢°(z) has a single zero of order n > 0
at z = 0. It was shown in I that, by suitable trans-
formations, the radial Schrédinger equation

woy + [ - Y72 oo =0 ©

can be written in the form (2). In particular, from
Langer’s results, we can always write two linearly
independent solutions »3(r) of (3) whose form, for

1 A. O. Barut and J. Dilley, J. Math. Phys. 4, 1401 (1963).
The reader is referred to this paper for all details concerning
Langer’s method and its application to the scattering ampli-

tude.
* R. E. Langer, Trans. Am. Math. Soc. 34, 449 (1932).

sufficiently large |A|, is explicitly given in terms of
the two functions ¢(r) and ®(r), where

&'(r) = [&* — VOI*/N) — 1, @
e
o) = [ o005 ®)
and r, is a solution of the equation ¢°(r) = 0, with

fo— & M + o[% V(:!:)\/k)]- ©)
These results are identical to those reported in I,
and are valid in the left as well as the right half-
planes.
Since the solutions v3(r) are linearly independent,
the physical solution #,(r), defined by the boundary
condition at the origin,

() — ™t for Rex >0,

r—0

can always be written as a linear combination of
+
vx(r),

n() = a(\i@) + bNw(). )

The scattering amplitude is completely determined
by the two coefficients a(A) and b(2) which must
be identified by using the behavior of »(r) and
v3(r). In I, this identification was carried out by
using the known behavior of the wavefunction
atr = 0.

() — L, (8)
r—0

What we wish to note now is that although (8)
does not necessarily hold for Re < 0, nevertheless,
for values of A where it does hold, all of the methods
of I apply, and the asymptotic behavior of the
scattering amplitude is then given by (1).
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II. THE LEFT HALF-PLANE

As is well known, the physical solutions of the
Schrédinger equation can be analytically continued
in A through the equivalent integral equation®

1 r £X+§ Tx+§

=ty S AN, —
h=r N o [T)\_i E)‘—i [V(E) kz]vk(g)dé (9)
and, throughout the region where this solution
exists, (8) will be satisfied. Now, according fo
Newton’s work,* the constant term k* of V(&) — k*
will generate a series of fixed poles at A = —1,
~2, --- , while if

V{r) = 7, p> -2

the potential V{¢) will generate another sequence
of poles at A = —1 — %p, -1 — ¥p — §, —1 —
ip — 1, +-- ., How far the continuation can be
made in this manner depends upon the precise
behavior of V(r) at the origin. The precise result,
again from Newton’s work, is that if V() is
m times differentiable at r = 0, then (9) is valid
in the region Re > —m — %, except at the fixed
points mentioned above. (Of course, forp = 0or —1,
the poles at A = —1, —2, -.. | may cancel for
certain values of k, giving the well known indeter-
minacy points of the S-matrix.®) Thus, if the behavior
of the potential is such as o allow a continuation
into the region where the asymptotic formulas apply,
we See that (1) holds except in the neighborhood of a
discrete set of values of A, this set lying on the negative
real N azis for real potentials.

We close with two final observations:

{a) For any fixed k = 0, and sufficiently large
[A], all Regge poles must be in the neighborhood
of the fixed points on the negative real N axis.
However, since b = 0 is excluded, and the asymp-
totic theory is not valid uniformly in k, these con-
clusions do not exclude the possibility of an infinite

3 A. Bottino, A. M. Longoni, and T. Regge, Nuovo Ci-
mento 23, 954 (1962).

+R. G. Newton, J. Math. Phys. 3, 867 (1962).

5 See, for example, A. O. Barut and F. Calogero, Phys.
Rev. 128, 1383 (1962); A. Ahmadzadeh, P. Burke, and C
Tate, “Regge Trajectories for Yukawa Potentials,” UCRL-

10216 (1962); S. Mandelstam, Ann. Phys. 19, 254 (1962);
also Ref. 4.

number of poles arriving at A\ = —} when k = 0.°
(b) The asymptotic behavior is sufficient to allow
the Khuri representation in the left half-plane.’

APPENDIX

We give here the most precise restrictions of V(r).
For our present purpose, we assume that the po-
tential can be analytically continued in the r plane
to ~7/2 < arg r < #/2, and that, for sufficiently
large |[r|, it decreases monotonically. In addition,
to derive the results in I, two further conditions
must be satisfied:

(a) We must have
¢°(r) —> ¢5(r)

jri—w
for all real values of r, where
() = [k — VOIE/\) — 1,
do(r) = (K% /N7 — 1.
Thus
¢°(r) — ¢o(r) = —(V(r»*/N) —> 0
(R Ea
if #*V(r) is bounded. In particular, V(r) must be
less singular than 1/r* at the origin and must
decrease at least as 1/r* as r — « on the real axis.
(b) In addition, according to Eq. (28) in I, one
must be able to define a point B()\) such that
VRE| _ KR
2 l 32
If one chooses R(A\) = (W /k) + (1/k)\%, then
VIRIR?  V(\k) ¥’R?
O U

< 1i-

12\

so that V(\) must decrease as A" ag |\| — o.
For real k, this would mean that the results are
not strictly proved on arg A = Z=/2 for Yukawa
potentials, although they would apply for modified
Yukawa types such as V({r) = (¢ — wr)/(1 + 7).
It may be, however, that the apparent difficulty
exists merely in our particular method of evaluation.

8 V. N. Gribov and 1. Ya. Pomeranchuk, Phys. Letters 2,
239 (1962); B. R. Deasi and R. G. Newton, Phys. Rev. 129,
1445 (1963).

7 N. N. Khuri, Phys. Rev, 130, 429 (1963).
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The Weyl correspondence between classical and quantum observables is rigorously formulated for
a linear mechanical system with a finite number of degrees of freedom. A multiplication of functions
and a *-operation are introduced to make the Hilbert space of Lebesgue square-integrable complex-
valued functions on phase space into a H*-algebra. The Weyl correspondence is realized as a *-iso~
morphism f— W(f) of this H*-algebra onto the H*-algebra of Hilbert—Schmidt operators on the Hilbert,
space of Lebesgue square-integrable complex-valued functions on configuration space. Moreover, the
kernel of W(J) is exhibited in terms of a Fourier-Plancherel transform of f. Elementary properties of the
Wigner quasiprobability density function and its characteristic function are deduced and used to obtain

these results.

1. INTRODUCTION

HE configuration space of a linear classical-

mechanical system with one degree of freedom
is the real line B. The Hilbert space utilized in the
quantum theory associated with such a classical-
mechanical system is the space L*(R) of Lebesgue
square-integrable complex-valued functions on R.
Consequently, it is asserted in the conventional
Hilbert space formulation of quantum mechanics
that each self-adjoint operator on L*(R) corresponds
to a unique numerical-valued observable attribute
of the physical system and conversely.' For example,
the operators P and @ corresponding to momentum
and position, respectively, are the following:

(P¥)(q) = (R/)dy/dq (I.1a)

and

@Q¥)(9 = q¥(9) (I.1b)

for ¢ in R and appropriate ¢ in L*(R).? However,
the physical significance of an arbitrary self-adjoint
operator on L*(R) is not manifestly evident.

The Weyl correspondence provides physical sig-
nificance for a large class of self-adjoint operators
on L*(R). In classical mechanics, each numerical-
valued observable attribute of the physical system
is represented by a function on the phase space of
the system®; in this case, the Cartesian product
R X R. Weyl has suggested the following method
for obtaining quantum-mechanical operators cor-

* National Science Foundation Postdoctoral Fellow.

1 G. W. Mackey, Mathematical Foundations of Quantum
Mechanics (W. A. Benjamin, Inc., New York, 1963), pp.
7576, 85-88.

2 N. J. Akhiezer and I. M. Glazman, Theory of Linear
Operators in Hilbert Sf;ace (Ungar Publishing Company, Ine.,

ew York, 1961), Vol. 1, pp. 103-113.

3 Reference 1, p. 27.
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responding to the classically observable functions
on phase space. Let f be a function on R X R
with the Fourier representation

1o, 9 = 0™ [[ f¢.9) ewitep+29 o d
2

According to Weyl, the corresponding quantum-
mechanical operator W(f) is obtained by replacing
p by P and ¢ by @ in Eq. (I.2); consequently, W(f)
is given by the formal expression

w4 = @ [[ K p) expitgP+ @) do dyf
(1.3)

where ~ denotes the closure of an operator.® [The
factor (2xh)™* is only a convenient normalization.]
This association of the quantum-mechanical operator
W(f) with the classical function f on phase space
is the so-called “Weyl correspondence.”

The Weyl correspondence is closely related to the
phase-space formulation of quantum mechanics.®
The Wigner phase-space quasiprobability distribu-
tion function ®[Y] and its characteristic function
8[¥] corresponding to a wavefunction ¢ in L*(R)
replace the wavefunction in this formulation:

&lYIp, ) = @et) [ w(a+ha)e ™ wig—tha) do
(I.4a)

4 H. Weﬁl, The Theory of Groups and Quantum Mechanics
(Dover Publishing Company, Inc., New York, 1950), pp.
274-275.

5 Reference 2, p. 78.

® For a review of the phase space formulation of quantum
mechanics see, E. C. G. Sudarshan, “Structure of Dynamical
Theories” in Lectures in Theoretical Physics, Brandeis Summer
Institute 1961 (W. A. Benjamin, Inc.,, New York, 1962),
pp- 143-199.



MATHEMATICAL ASPECTS OF THE WEYL CORRESPONDENCE 67

and

8[¥I(¢’, p") = @h)Hexp i(¢’P + p'Q) ¥, ¥I.
(1.4b)

The connection between the Weyl correspondence,
the Wigner function and its characteristic function
is indicated by the following expressions for the
expectation value of W(f):

Wi, » = [[ 16, 90110, 9 dpds  (L50)

and
Wy, ¥ = f (@, p")8l¥l(¢ ,p") da’ dp’. (1.5b)

The possibility of expressing the expectation value
of the quantum-mechanical operator as phase-space
integrals permits the development of a phase-space
formulation of quantum mechan’cs. The resulting
formulation of quantum statistical mechanics ex-
hibits an analogy with classical statistical mechanics
which proves to be quite useful for the investigation
of some physical problems.”

Therefore, it is desirable to have a mathematically
rigorous formulation of the Weyl correspondence,
the Wigner function, and its characteristic function
for both conceptual and practical reasons. The
purpose of this paper is to formulate the Weyl
correspondence rigorously utilizing the theory of
harmonic analysis. Section III is devoted to obtain-
ing an alternative form of Eq. (I.3). Some elementary
properties of the Wigner function and its charac-
teristic function are deduced in Sec. IV. The exist-
ence and uniqueness of the Weyl correspondence
as a map f — W(f), called the Weyl transform,
from the Hilbert space L*(R X R) of Lebesgue
square-integrable complex-valued functionson B X B
into the algebra £,(Z°(R)) of continuous linear op-
erators on L?(R) is established in Sec. V. The
operator W(f) is shown to be an integral operator
on L*(R) and the kernel of W(f) is exhibited in
terms of a Fourier-Plancherel transform of f in
Sec. VII. A multiplication of functions and a *-
operation are introduced to make L*(R X R) into
an H*-algebra in Sec. VIII. The Weyl transform
is then shown to be a *-isomorphism of this H*-
algebraic structure of L*(R X R) into the H*-algebra

7 For a review of the applications of the phase-space formu-
lation of quantum statistical mechanics see, H. Mori, I.
Oppenheim, and J. Ross, “Some Topics in Quantum Statistics:
The Wigner Function and Transport Theory” in J. de Boer
and G. E. Uhlenbeck, Studies in Statistical Mechanics (North-
Holland Publishing Company, Amsterdam, 1962), Vol. 1,
pp. 212-298.

Lrs(L*(R)) of Hilbert-Schmidt operators on L*(R).
Possible generalizations of these results are indicated
in Sec. IX. Necessary mathematical concepts are
introduced in Secs. IT and VI. The exposition assumes
some acquaintance with basic concepts in measure
theory® and the theory of Hilbert space.’

II. MATHEMATICAL PRELIMINARIES

The Hilbert spaces L*(R) and L’(R X R) of
Lebesgue square-integrable complex-valued func-
tions on R and R X R, respectively, are considered
throughout the following sections; consequently, the
following notation for their respective inner products
and norms will be adopted:

W #) = [ 4@v@ ds, (1)
Wl =@, 9 (11.1b)
for ¢y, ¥, ¥ in L*(R) and
ot = [[ 1w b, ) dody,  (11.20)
Il = ¢ (11.2b)

for f,, fs, f in L*(R X R). The Fourier—Plancherel
operator F on L*(R) is defined as follows'’:
) f e — 1
_ & < __ =

F)) = @2m) Iz _— ¥(s) ds (11.32)
for z in R and ¢ in L*(R). F is a unitary operator
on L*(R) with the inverse
=1y as

18

-1 1 d
F)) = @m)7 o

for z in R and ¢ in L*(R). If ¢ is in both L’(R)
and L'(R), then Eqs. (I1.3) reduce to the classical
expressions for Fourier and inverse Fourier trans-
forms:

(I1.3b)

FP@) = @ f Ty ds  (IL4da)

and

9@ = @0 [ o=y ds

for z in R. If ¢ is in L’(R), then the complex con-
jugate of ¢ is denoted by ¢,

@ = v@

8 See, for example, S. K. Berberian, Measure and Inte-
gration (The Macmillan Company, New York, 1965).
. % See, for example, S. K. Berberian, Introduction to Hilbert
Space (Oxford University Press, New York, 1961).

10 Reference 2, pp. 76-77.

(11.4b)

(11.5)
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for z in R. The following properties of the Fourier~
Plancherel operator will be utilized:

F} = F 'y, (I1.6a)
F'} = Fy, (11.6b)
(FP(@) = (F9)(—2) (I1.6¢)

for all ¢ in L*(R) and z in R.
If ¢, and ¢, are in L*(R), then the function
Y12 on B X R is defined by

Yo va(@, y) = $i(@)¥=(y) (I

for (z,y) in R X R; therefore,' ¢, ¢, isin L*(R X R)
and

H'f/lkt’zl] = h”li I‘l’z} (I1.8)

Fourier-Plancherel operators F,, F,, and F,, on
L*(R X R) with respect to the first variable, the
second variable and both variables, respectively, may
be introduced as the unique unitary operators on
L*(R X R) such that

Fiy -y = (F) - ¢, (11.92)
Fayy ¥ = '(F‘pz}y (II.Qb)
Fioy- Py = (F‘l’l) (Flﬁz) (ILQC)

for all ¥, and ¢, in L*(R). F,, F, and F,, exhibit
properties analogous to Eqs. (I1.6) and, furthermore,

F1F2 = F2F1 = Fj_z. (II'IO)

It will prove to be extremely useful to introduce
a “twisting” operator T on L*(R X R) defined by

(TH(z, y) = kY + e,y — 3hz)  (IL.11)
for (z, y) in B X R. Since the matrices

1 -1 p-t
[Zh 1] and [ ’*’] (I1.12)
4 1 b3

2

are mutual inverses and have Jacobian % and 27,
respectively, T is a unitary operator on L*(R X R)
with the inverse

(T, ¥) = BE (z — 3), 3= + )
for (z,y) in R X R and f in L*(R X R).
III. WEYL TRANSFORM: FORMULATION

The essential aspect of the configuration space
R involved in the consideration of the Weyl cor-
respondence is the additive group structure of R.*?

(11.13)

1 Reference 8, p. 131, Exercise 2.

vl E. Sf/%al Mathematical Problems of Relativisiic Physics
(American athematical Society, Providence, Rhode Island,
1963), pp. 9-18.

Indeed, if ¢’ is in R and the operator U(g’) on L*(R)
is defined by

U@)@E) = ¥z + k) (I1L.1)

for z in R and ¢ in L*(R), then ¢ — U(¢’) is a
weakly continuous unitary representation'® of the
additive group of reals on L*(R). It may be shown
that

Ulg) = "

for ¢’ in R; consequently, P is the infinitesimal
generator of the representation ¢’ — U(¢’). The
operator Q is also the infinitesimal generator of a
representation of the additive group of reals. Indeed,
if p’ is in R and the operator V(p") on L*(R) is
defined by

(I11.2)

(V@) ¥)(x) = e ¥(z) (I11.3)

for z in R and ¢ in L*(R), then p’ — V(p') is a
weakly continuous unitary representation of the
additive group of reals on L*(R); furthermore,

V@) =" (I11.4)

for p’ in R. Since the infinitesimal generators P and
Q satisfy the Heisenberg commutation relations,

QP — PQ C ki, (I11.5)

the representations ¢’ — U(q’) and p’ — V(p’) must
be expected to possess distinguished commutation
properties. Indeed, a short computation using Eqs.
(II1.1) and (I11.3) yields the Weyl commutation
relations

U(@YWV@) = ™" Ve Ulg)  (I1L6)

for ¢’ and p’ in E.

The sum of the unbounded operators P and @
in the integrand of Eq. (I.3) presents an analytical
inconvenience which we may eliminate by consider-
ing the representations ¢’ — U(g’) and p’ — V().
For each pair ¢’ and ' in R, we introduce a unitary
operator W(q’, p’) on L*(R) defined by

W(¢', p) = exp (3hg'p)V{"U().  (AILT)

The commutation relations for W{¢, p’) follow
directly from Eq. (I11.6):

W{gl, pYW(qs, %)
= exp [3h(glp: — @pDIW (gl + @5, p1 + p2)
(I11.8a)

13 F, Riesz and B. Sz.-Nagy, Functional Analysis (Frederick
gsngar Publishing Company, Inc., New York, 1957), pp. 380~
5.
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for ¢f, i, ¢}, p5in R or
Wigi, pDW(gs, p3)
= exp [3hB(gi, i, ¢;. PDIW(gi + 95, p1 + pb)
(II1.8b)

for ¢l, pf, ¢4, P4 in R, where B is the function from
(R X B) X (R X R) into R defined by

Bz, y;2',y) = zy’ — 2’y (1I18¢)

for (z, y), (', ¥') in B X R. It follows from Eqs.
(I11.7) and (II1.8) that £ — W{l¢, tp”) is weakly
continuous unitary representation on L’(R) of the
additive group of reals for each pair ¢/, p’ in R.
Consequently, by Stone’s theorem, there exists s
unique self-adjoint operator B(¢’, p’) on L*(R) such
that

Wity tp') = """ (111.9)
for all t in R; indeed, it can be shown that
R(¢,p) = (¢P +p'Q) .  (IL10)

Consequently, we may replace Eq. (I1.3) by the
following expression involving W{(g’, p’) instead of
P and §:

W = et [[ Euie, 2w, ) dy w.
: A1

The following sections are devoted to giving a well-
defined meaning to this formal expression using only
basic results from measure theory, the theory of
Hilbert spaces and harmonic analysis.

IV. WIGNER AND CHARACTERISTIC
FUNCTIONS

The goal of this section is to deduce the square-
integrability of the Wigner function and its char-
acteristic function and establish their relation as
Fourier-Plancherel transforms. The following defi-
nition introduces constructs which will be shown
to include the usual Wigner function and charac-
teristic function corresponding to a wavefunction.

Definition IV.1: The maps ® and $ from the
Cartesian product L*(R) X L*(R) into L*(R X R)
are defined by

Ql¥y, o] = FiTY.- ¢, (1Iv.1a)
and
5{%, 1{'2] = F;}T%'lzz, (Iv-lb)

respectively, for all ¢, and ¥, in L*(R).

Proposition I'V.1: The maps ® and § are sesqui-
linear maps,'* that is,

Rl + ¥, ol = Rl¥y, ¥ + R[¥, ¥u], (IV.29)
R, ¥l = AR[¥, V2], (IV.2b)
Ry, ¥2 + ¥l = Ry, da] + Q[ ¥, (IV.20)
®R[¥1, M) = AR[Yy, ¥l (Iv.2d)

for all ¥, ¢, ¥», ¥ in L*(R) (and similarly for &
replaced by 8) such that

IR, Yalll = ISl dalll = 1¥4] |¥el

and

(IV.2¢)

(R[‘!’u '1'2} = F:zs[‘[’u \5’2] (IV3)
for all ¢, and ¥, in L*(R).

Proof: Clearly, ¥y, ¥» — ¥,*¥, is a sesquilinear
map of L*(R) into L*(R X R). Since F,, F;', and
T are unitary operators on L*(R X R), it is im-
mediate that ® and $ are sesquilinear and, moreover,

”(R['Pl, 1[’2]” = ”‘pl : lpz”;

”5[1’1, \1/2]” = ”‘xbl 1}2”

Consequently, Eq. (IV.2e) follows from Eq. (I1.8).
The identity

FoF;' = Fy
follows from Eq. (I1.10); therefore,
Fia8[¥1, ¢¥s] = FwF;lT%'%
= FiTY:¥,
= R[¢, ¥

The following proposition establishes explicit form-
ulas for the funections ®[Y,, ¢»} and 8[¥,, ¢.] cor-
responding to ¥, and ¥, in L*(R).

Proposition IV.2: If ¢, and ¢, are in L*(R), then
(i) for almost all (p, ) in B X R,

R, ¥ul(p, 9
= @) [ o + )"l — $he) do (IV.)

(ii) for almost all (¢, p) In R X R,

8[¥1, ¥al(g’, P)

= @ [ we + 1) e — the) do
(IV .5a)
= @)W, P, ¥a)- (IV.5b)

1 Reference 9, pp. 123-130.
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Proof: If the function b in L*(R X R) is defined by

h = T\f’x“pz,

then the z-section'® h, and the y-section A’ of A
are given by

h(w) = B + 3h2) Pulu — 3h2)
and
e = Ry + 3 daty — )

for  in B. For a fixed z in R, consider the functions
g, and g, defined by

0@ = i(u + 3ha)
9:(0) = Polu — 3hx)

for u in B. The translational invariance of Lebesgue
measure implies that g, and g, are elements of
L*(R). k., is the product of elements of L*(R);
therefore, h, is an element of L'(R) as a function
of u. Since h is in L*(R X R),

[ he, 9P drdy < =;
therefore,
f{t‘z,,(u)f2 du < @

for almost all z in B by Fubini’s theorem. Con-
sequently, &, is an element of both L*(R) and L'(R)
for almost all z. A similar argument establishes the
same result for A",

According to Definition IV.1,

(R[‘l/n \02] = F\h
and

$l¥r, Yol = Fi'h

and, moreover, by the previous paragraph the class-
ical expressions for F, and F;' may be used. There-
fore, for almost all (p, ¢) in R X R,

G{[‘l/h ¢'2](p! Q)
= (2n)} f e""h(zx, q) dx

= @) | e Ylq + 3ha)Pa(q ~ $ha) dx
and for almost all (¢, p’) in B X R,
8{¢n, ¥:l(¢’, p’)

= @ [ h, ) da

= @)™ [ @ + 3oVt — Ihe) de,
» Reference 8, pp. 121, 128, 142,

where Fq. (I1.11) has been used to evaluate h =
Ty, ¥, Introducing the change of variables # —
2’ = z — }hg, the last expression becomes

S[¥, ¥:l(¢’, P
= (2rh)~? f exp [ip’ (&’ + 3R ) [ (2’ +hg) §a(z") dx’.

However, it follows immediately from Eqs. (II1.1),
(II1.3) and (II1.7) that

(W(¢’, p)¥)(@) = exp [ip’ (@ + 3hg)]u(a" + Re').

Substituting this into the integrand and changing
to inner-product notation yields

8[¥n, ¥:1(¢’, P)
= et [ W@, I RE) &

= (27fh>“%(W((I' ' p,) "'l ’ \1/2)
and completes the proof.

Consequently, if ¢, = ¥, = ¢ for a wavefunetion
¢ in L*(R), then ®[y, ¢] and 8y, ¢] have the form
of the usual Wigner quasiprobability distribution
function ®[Y] and its characteristic function 8]
indicated in Egs. (I.4). An immediate corollary is
that the Wigner function and its characteristic
function are square-integrable functions on phase
space and

lalyll = lIslyll = [¥f.

This statement has been asserted in the literature
on the phase-space formulation of quantum me-
chanics; however, only heuristic proofs involving
unjustifiable interchanges of orders of integrations
have been indicated.

V. WEYL TRANSFORM: EXISTENCE AND
UNIQUENESS

The existence and uniqueness of the Weyl cor-
respondence as a map from L*(R X R) into the
algebra £,(L*(R)) will now be established using only
the results of the previous section and the corollary.
of the Riesz—Frechet theorem which gives the form
of bounded sesquilinear forms on Hilbert space.'®

Proposition V.1: There exists a unique map
W :f— W() of L*(R X R) into £,(L*(R)) such that,

T, ¥ = [[ 10, D8I, ¥:0, @) dp dg

for all ¢, and ¥, in L*(R) and all f in L*(R X R);
moreover,
1t Reference 9, pp. 130-131.
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W\, ¥2)
= [[ @upia, 2981., va', 2) da’ '
for all ¢, and ¥, in L*(R) and all f in L*(R X R).

Proof: Consider & fixed f in L*(R X R) and a
fixed pair ¢, and ¢, in L*(R). &[¢,, ¢.] and f are

elements of L*(R X R). Let ¢,(y,, ¥») denote their

inner product:

‘P:‘(‘ﬂ’u sz) = (m[\!«, %}r f)
Since
(R[‘l/u \t’z] = Fms[‘l/u sz]

an alternative expression for ¢;(y,, ¥;) is the fol-
lowing:

‘Pf(&bn ¥2) = (F 125{&"1: ¥, f)
= (3[‘#1: \{’2]: F;;f),

where the unitarity of F,, and the property anal-
ogous to Eq. (I1.6b) have been used. The definition
of the inner produet in L*(R X R) yields

e, o) = [[ 160, D01, ¥0, 0) dp da

and

o, ¥ = [[ Eudla’,2)s00n, v)a',9) dg’ .

Next consider the map ¢y, ¥» — ¢, ¥:) for
a fixed f in L*(R X R). According to Proposition
IV.1, ¢, ¥» — QR¥s, ¥.] is a sesquilinear map of
L*(R) into L*(R X R) such that

&Lgas #alll = [¥al [¥el.

Consequently, it follows from the linearity of the
inner product in the first variable and the definition
of ¢, ({1, ¥.) that ¢,(¢;, ¥2) is a sesquilinear form
on L*(R). Moreover, o, is bounded, since by the
Cauchy-Schwartz inequality

‘%‘(\1’1; ‘;’2)! = K(R{‘Pl: Y], f)l
< |&lyy, | IF)
<l el [¥al-

Therefore, there exists a unique continuous linear
operator W(f) on L*(R) such that

e(¥1, 1"2) = (W(f)‘pl’ ‘1’2)

for all ¢, and ¢, in L*(R) which completes the proof
If fisin L*(R X R), then

(Wi, ¥2)

= [[ @@, 225, val(a' 90 g’
V2

= e [[ Fufa, )W, P, 99 do’ dp’

for all ¥, and ¢, according to the above proposition
and Proposition IV.2. In terms of the conventional
notation for an operator determined by an integral
expression'’ such as Eq. (V.2), W(f) should be
written as follows:

w() = ey [[ Eaa, W@, p) dg’ dp.
V.3)

This is precisely the formal expression of Eq. (I11.11)
for which a well-defined meaning was sought. It
should be noted that this goal has been achieved
using only basic results from the theory of measures;
harmonie analysis, and Hilbert space and without
recourse to more sophisticated theories of integration
of vector-valued functions. Because of Egs. (V.2)
and (V.3), it is appropriate to introduce the following
definition, :

Definition V.1: The map W from L*(R X R) into
£,(L*(R)) defined in Proposition V.1 is called the
Weyl transform.

It is appropriate that a remark about uniqueness
of the Weyl transform be made at this point. Pro-
position V.1 asserts that the Weyl transform is the
only map from elassically observable functions to
quantum-mechanical operators which allows com-
putation of expectation values by evaluating phase
space integrals of the classically observable functions
with respect to the Wigner quasiprobability density
function. Evidently, other choices of density func-
tions lead to different correspondences between clas-
sically observable functions and quantum-mechan-
ical operators.

VL HILBERT-SCHMIDT OPERATORS AND
H*-ALGEBRAS

The algebra £gs(L*(R)) of Hilbert-Schmidt op-
erators on L’(R) will play an essential role in the
further discussion of the Weyl transform; therefore,
some properties of Hilbert-Schmidt operators on
L*(R) will be briefly noted here.'* The Hilbert—
Schmidt operators on L*(R) are precisely the in-

17 M. A. Naimark, Normed Rings (P. Noordhoff, Ltd.,
Groningen, The Netherlands, 1960), pp. 152-154,

18 R, Schatten, Norm Ideals of Completely Continuous Oper-
ators (Springer-Verlag, Berlin, 1960), pp. 29-36.
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tegral operators on L*(R) with kernels in L*(R X R).
If h is an element of L*(R X R), then the integral
operator on L*(R) with kernel & will be denoted
by Si:

@)@ = [ Mo vy (VLY
for z in R and ¢ in L*(R). A *-operation may be
introduced in L*(R X R): if h is an element of
L*(R X R), then h* is the element of L’(R X R)
defined by

Rz, y) = E(y) ) (V1.2)

for (z, ¥) in R X R. This *-operation in L*(R X R)
corresponds to the *-operation of taking the op-
erator adjoint,

(Sg)* = S};u WI«?)}

A multiplication of funetions may alse be introduced
in L*(R X R):if g and h are elements of L*(R X R),
then g o h is the element of L*(R X R) defined by

oW ) = [ oa e de (V.4
for (z, ¥) in B X R. This multiplication corresponds
to the multiplication of operators,

Sgsh = Syolv (VI.S)

In order to summarize the properties of these
operations and deduce properties of the Weyl cor-
respondence, it is convenient to introduce the concept
of an H*algebra.! An H*algebra is a complex
Hilbert space H with a #*-operation & — a* and
a multiplication a, b — ab which makes H into a
Banach *-algebra relative to the inner product norm
la] = (a, a)* of the Hilbert space and, furthermore,

(ab, &) = (b, a*c) (V1.6)

for all g, b, ¢ in H. Consequently, if H is a Hilbert
space and operations ¢ — a* and @, b — @b are
given, then the requirements imposed on these op-
erations to make H into an H*-algebra are precisely
the following:

ab +¢) = ab + ac, (b + c)a = ba + ca, (VI.73)

Mab) = ()b = a(Ab), (VL.7b)
albe) = (abe, (VL7¢)

a** = q, (VL.7d)

(e + B)* = a* + b¥, (V1.7¢)

10 C, E. Rickart, General Theory of Banach Algebras (D.
Van Nostrand Company, Inec., Princeton, New Jersey, 1960),
p- 272

(ab)* = b*a*, (VL7£)
(\a@)* = Ra*, V1.7g)
la*| = lal, (V1.7h)
lab] < la] 18], (VL.73)
(ab, ¢) = (b, a*c), (V1.7j)

for all g, b, ¢ in H and all complex numbers A,

An example of an H*-algebra is the set £as(L*(R))
of all Hilbert-Schmidt operators on L*(R) when
£as(L*(R)) is equipped with the Hilbert-Schmidt
inner product:

(A> Blas = g (A, B\!f,.)

for A, B in £gs(L*(R)) where {{,} is any ortho-
normal basis of L*(R). Another example of an
H*.glgebra, is the Hilbert space L*(R X R) equipped
with the *-operation h — A* and the multiplication
g, h — g o h defined by Eqgs. (V1.2) and (VI.4),
respectively. Moreover, this H*-algebra is isomet~
rically *-isomorphic to the H*-algebra £xs(L*(R))
under the map b — §,.

VII. WEYL TRANSFORM: EXPLICIT FORM

The existence and uniqueness of the Weyl trans-
form has been demonstrated; however, it would be
desirable to have a constructive procedure for ob-
taining the operator W(f) from the function f. The
purpose of this section is to prove that W{f) is a
Hilbert~-Schmidt operator and exhibit its kernel. The
proof of this assertion is accomplished by exhibiting
the kernel corresponding to W{f) in terms of a
Fourier-Plancherel transform of f. The operator K
defined on L*(R X R) by

Bz, y) = T'Fh)y,z)  (VILD)

for (xr, ¥Y) in B X B and h in L*(R X R) will be
used to obtain the kernel. The essential properties
of K are indicated in the following proposition.

Proposition VII.1: K is a unitary operator on
L*(R X R) such that

() K =TF (VIL.2)
(i) if hisin L*(R X R), then
Kk = (Kh)* (VIL3)
(ili) if ¢4, ¥ are in L*(R), then
¥, Y] = K7 T (VIL4)

Proof: K is clearly unitary from its definition.
Since functions of the form .-y, with ¥, and ¢,
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in L*(R) are dense in L*(R X R), it suffices to prove
K'pl' ¥ = T_IFJ—I‘IH’ ¥a

for all ¢, and ¢, in L*(R). If ¥, and ¢, are in L*(R),
then

TFT ot = T (F ') ¥a
by the definition of F,. If (x, y) in B X R, then
Vi A RA G
= F9)0 7@ — Gl + )
= Fy)07'(y — )G + 9),

where Eqgs. (I1.6¢) and (I1.13) have been used. On
the other hand,

K¢ ¥a)(z, y) = (T 'Fiy- ¥:)(y, 2)
= (T7'(F¥) ¥2)(y, @)
= (FY )7y — D)Wy + 2))

for (z, y) in B X R where Eqgs. (VI.1), the definition
of F, and Eq. (I1.13) have been used. Consequently,
the asserted identity

K =T7F"

is proven.
Let 2 be an element of L*(R X R). Then for
(z,y)y in R X R

(K};)(xl y) = (T—IFI};)(?/) x)
= (T_lm(y) x)
= (T_IFI—I)(?/) ),

where the property of F, analogous to Eq. (I1.6a)
has been used. Introducing the expression of Eq.
(VIL.2) for K yields

(Kb, y) = KWy, 2)
= (Kh)*(x, v),

where the *-operation of Eq. (VI.2) has been in-
troduced.
If ¢, and ¢, are in L°(R), then

®Rlyr, Yo = FiTyr ¥,
by definition; however,
K = (TF{' =FT
which yields Eq. (VII.4) and completes the proof.

The operator K on L*(R X R) will now be used
to obtain the kernel of the operator W(f) on L*(R).

Proposition VII.2:If f is an element of L*(R X R),
then W(f) is the integral operator on L’(R) with

the kernel Kf; consequently, W(f) is a Hilbert—
Schmidt operator on L*(R).

2Proof: Let ¢, and ¢, be arbitrary elements of
L*(R). The result

W, ¢2) = (m['/’n ¥l f)

was established in the proof of Proposition V.1.
Equation (VII.4) for ®R[Y,, ¥.] and the unitarity
of K yield
(W(f)'ﬁn Vo) = (K-llpl";z; f->
= ({1 ¥s, Kf)
Since Kf = (Kf)*, it follows that
(W(f)!h; ¥2) = ('Pl"pz; (Kf)*)

= [[ 4@ OED @, 1) dz dy
= [[ ®nw, D)) dz dy

where the definition of * has been employed. Fubini’s
theorem justifies replacing the latter integral by an
iterated integral; hence,

W, ) = [[ [ @D, 300 d | a0 e

= [ Sr)6)%) dy

= (Sxf'l’u 1/’2) .
Since ¢, and ¥, are arbitrary, it follows that

W(f) = SK[

and W(f) is the integral operator with the square-
integrable kernel Kj; therefore, W(f) is a Hilbert—
Schmidt operator.

The following question now arises: if A is an
operator on L’(R), does there exist a function f
in L*(R X R) such that W(f) = A? The following
proposition in conjunction with the previous proposi-
tion asserts that the answer is affirmative if and
only if 4 is a Hilbert-Schmidt operator.

Proposition VI1.3: If 8, is the integral operator
on L*(R) with kernel h in L*(R X R), then f = K™'h
is the unique element of L*(R X R) such that

8, = W(). (VIL5)
Proof: If f is an element of L*(R X R) such that
SK]" = S).,

which implies
Kf =h
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or

f =K7Y,
which completes the proof.

It is now evident that the replacement of the
operator K by another operator K’ with similar
properties would lead to a different correspondence
between classical observable functions and quantum
mechanical operators and also a ‘“quasiprobability
density function” corresponding to a wavefunction
which is distinct from the Wigner quasiprobability
density function.

VIII. ALGEBRAIC ASPECTS OF THE WEYL
TRANSFORM

The Weyl correspondence has been realized in
the previous sections as a 1-1 map W : f —» W(§)
called the Weyl transform from L’(R X R) the
algebra £ys(L*(R)) of Hilbert-Schmidt operators
on L*(R). Since two Hilbert-Schmidt operators
may be multiplied together to yield another Hilbert—
Schmidt operator, the Weyl transform may be used
to introduce a multiplication of functions in
L*(R X R). Indeed, if f and g are element of
L*(R X R), then f X g will denote the element
of L*(R X R) defined by

f X g =K"(Kf o Ky), (VIILI)

where o denotes the multiplication of kernels intro-
duced in Eq. (VI.4). Clearly, K maps the multiplica-
tion X into the multiplication o:

K({ X g) = Kf oKy, (VIII.2)

forallf, gin L*(R X R). The map f — fis a candidate
for a *-operation in L*(R X R) with the multiplica-
tion X; moreover, by assertion (ii) of Proposition
VIIL.1:

= (Kf)* (VIIL.3)

for all fin L*(R X R).

Proposition VIII.1: L*(R X R) with the opera-
tions f — fand f, g — f X g is an H*algebra.
Moreover, K is an isometric *-isomorphism of the
H*-algebra induced by - and X onto the H*-algebra
induced by * and o.

Proof: The properties of Eq. (VI.7) for - and
X follow directly from the corresponding property
for * and o, since K is a unitary operator with the
properties of Eqgs. (VIIL.2) and (VIII.3). This also
implies K is an isometric *-isomorphism of these
two H*-algebras.

It was noted in Sec. VI that the Hilbert—-Schmidt
operators form an H*-algebra. Many of the algebraic

properties of the Weyl transform are obtained by
recognizing that the Weyl transform is an isomor-
phism of H*algebras as indicated in the following
proposition.

Propostion VIII.2: The Weyl transform W : f —
W(f) is an isometric *-isomorphism of the H*-
algebra induced on L*(R X R) by ~and X onto
the H*-algebra £xs(L°(R)) of Hilbert—-Schmidt op-
erators on L*(R):

) W) = WH*, (VIII.4a)
) WG X g) = WHW(g), (VIII.4b)
(iii) WO = \W(), (VIII.4c)
() WG+ g) =W + W(g), (VI1I.4d)
@ WOl < = 1" @llas. (VIII.4e)

Proof: Since W(f) = Sk, it suffices to remark
that f — Kf is an isometric *-isomorphism of the
H*-algebra induced in L*(R X R) by and X onto
the H*-algebra induced in L*(R X R) by * and o
and that A — §, is an isometric *-isomorphism of
the latter onto the H*-algebra £gs(L*(R)).

The sine and cosine brackets® of the phase-space
formulation of quantum mechanics are related to
the multiplication X. Indeed, if f and g are elements
of both L'(R X R) and L*(R X R), then a tedious,
but straightforward, computation yields the fol-

lowing:
INEAY
¢ x 0@ v =3 (1) [[[] 1, vea, v
9% 1z vy
X exp [—-——det Lz v }dx dy’ dz'’ dy"’
(VIIL.5a)
1
[, 9]-@z, v) = <27r> f f [ 1@, ye", y")
1z y
X sin |: det i : z :l dz’ dy’ dx’” dy’” (VII1.5b)
) 1(h
i1, e = 2 (1) [[f 1@, vae, v
9 1z y
X cos [;L det i ; : ] dx’ dy’ dx’’ dy’’ (VIIL.5c)

for (z, y), in B X R where
gl =fXg+tgX/f  (VIILS)

It should be noted that the nonlocality of the
product arises from the fact that P and @ do not
commute. In fact, the determinant appearing in

20 Reference 6; see also G. A. Baker, Jr., Phys Rev. 109,
2198 (1957) and C. L. Mehta, J. Math. Phys , 677 (1964)



MATHEMATICAL ASPECTS OF THE WEYL CORRESPONDENCE 75

Egs. (VIILS5) is expressible in terms of the com-
mutator function B introduced in Eq. (IIT.8¢):

lz y
det |1 = v
1 27y
= @y —2"Y) — @y’ — 2"y + @' — 2
(VIII.7a)
= Bz, y;2', y') + B/, y'; 2", y"')
+ B@",y";z,y)  (VIIL.7b)

for all (z, y), (', ), (=", ¥") in B X .
IX. COMMENTS AND GENERALIZATIONS

The previous sections have been restricted to
quantum mechanics; however, the results have ex-
tensions to quantum statistical mechanics. The Weyl
transform in conjunction with the B*-algebraic ap-
proach to quantum theory leads in a natural fashion
to the introduction of density operators correspond-
ing to the mixed states of quantum statistical
mechanics.”’*** Furthermore, the extension of the
discussion of Sec. IV to Wigner quasiprobability
density functions and characteristic functions in-
duced by mixed states yields a correspondence be-
tween Wigner functions and density operators im-
plemented by the Weyl transform.

The configuration space and phase space of a
linear classical mechanical system with n degrees
of freedom are R" and R X R", respectively, where
R" is the Cartesian product of » copies of E. The
analysis of the previous sections may be immediately
extended from the case n = 1 to arbitrary finite n
by replacing L*(R) and L*(R X R) by L*(R™) and
L*(R* X R™), respectively, and utilizing the theory
of harmonic analysis for functions of several vari-
ables.

It was remarked in Sec. IIT that the essential
aspect of the configuration space R involved in con-
sidering Weyl correspondence was its group strue-
ture: the additive group of reals is an example of
a commutative locally compact topological group.
The translational invariance of Lebesgue measure
and harmonic analysis on R were the essential
mathematical tools relating to R used in constructing
the Weyl transform. These constructs have gen-
eralizations to Haar measure and abstract harmonic
analysis on an arbitrary locally compact topological
group which is commutative.* Therefore, the ques-

21 J, C. T. Pool, “B*-Algebras and the Logic of Quantum
Mechamcs” (unpubhs ed).
n]J C. T. Pool, “Density Operators and Wigner Func-
tlons” (unpubhshed)
H. Loomis, Absiract Harmonic Analysis (D. Van
Nostrand Company, Inc., Princeton, New Jersey, 1953).

tion arises whether the Weyl transform admits a
similar generalization and, indeed, some results have
been obtained for very general commutative locally
compact topological groups.”*'*® These generaliza-
tions distinguish configuration space and momentum
space; consequently, some conceptual questions
about the Weyl transform are clarified. The removal
of the locally compact condition on the group is a
generalization which would be extremely important
since the replacement of the configuration space R
by an infinite-dimensional real Hilbert space cor-
responds to the transition to a physical system with
infinitely many degrees of freedom. The current
developments of harmonic analysis on Hilbert space
greatly encourage the possibility of considering the
Weyl correspondence and Wigner quasiprobability
density function in quantum field theory.

After completion of the investigations presented
in the previous sections, recent papers containing
some similar results were found. The approaches
of Segal® and Kastler®® consider the Weyl transform
as a map from the Fourier—Plancherel transforms
of the functions representing classical observables
to operators instead of directly from the classically
observable functions to quantum-mechanical oper-
ators. These approaches do not involve the explicit
use of the Wigner quasiprobability density function.
The essential aspects of the proof of Proposition
IV.2 have appeared in a paper by McKenna and
Klauder”; however, the relevance to the Wigner
quasiprobability density function was not indicated.

The introduction of the Wigner function and its
characteristic function in the study of the mathe-
matical aspects of the Weyl correspondence permits
direct proofs of results relating to the Weyl transform
based on basic theorems of measure theory, Hilbert
space theory, and harmonic analysis. Moreover, it
has resulted in an explicit representation of the
quantum-mechanical operator W(f) corresponding
to a classically observable function f in L*(R X R)
as a Hilbert-Schmidt integral operator on L*(R)
whose kernel is Kf, where K is a “twisted” Fourier—
Plancherel transform. Furthermore, the relation of
the Wigner quasiprobability density function to the
Weyl correspondence has been clarified by exhibiting
the Wigner function ®[y] corresponding to a wave-
function ¢ in L*(R) in terms of K~', the inverse

2 I, E, Segal, Math. Scand. 13, 31 (1963).

% J, C. T. Pool, Lecture Notes, Seminar in Theoretical
Physics, University of Iowa (1962).

26 . Kastler, “The C*-algebras of a Free Boson Field:
{lglggcmsion of Basic Facts,” Commun. Math, Phys. 1, 14

27 J, McKenna and J. R. Klauder, J. Math. Phys. 5, 878
(1964).
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of the ‘“twisted”’” Fourier-Plancherel transform X:
namely, G[y] = K~ '¢-J.

Note added to proof. The approach of Kastler®®
has been utilized to obtain results similar to Pro-
position VIII.2 and to study the relation between
density operators and quasiprobability density func-
tions® in the following: G. Loupias and S. Miracle-
Sole, “Sur le formalisme de la convolution gauche,”
Université d’Aix-Marseille Preprint (May, 1965).
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A method for expressing unitary, coupled channel, scattering amplitudes in terms of amplitudes
satisfying “‘uncoupled’” or ‘‘elastic’ unitarity equations is presented. The method is given a physical
interpretation by relating the equations to equations of the Heitler type. It is shown how continuous
channels may be incorporated into the formalism, in some circumstances, without requiring the
solution of integral equations. The influence of inelastic channels on pure elastic scattering is men-
tioned briefly and a pseudoelastic form of the exact unitarity equation is discussed. No applications

of the method are undertaken here.

1. INTRODUCTION

N this paper, a method for expressing scattering

amplitudes satisfying coupled channel unitarity
equations in terms of amplitudes satisfying ‘‘un-
coupled” or “elastic” unitarity equations is pre-
sented. Many methods of expressing unitary scat-
tering amplitudes in terms of Hermitian amplitudes
already exist."”® These methods are attractive be-

* Supported in part by the U. S. Atomic Energy Com-
mission.

1 Present address: Department of Physics, The Pennsyl-
pania State University, University Park, Pennsylvania.

1'W. Heitler, Proc. Cambridge Phil. Soc. 37, 291 (1941);
See also M. L. Goldberger, Phys. Rev. 84, 926 (1951).

2 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

8 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467
(1960).

cause the Hermitian amplitude involved may be
chosen arbitrarily as far as the unitarity constraint
is concerned. Also, for two-particle channels, the
Heitler equation, when formulated in the angular
momentum representation, can be solved algebra-
ically.' The other methods require the solution of
linear integral equations.

Notwithstanding the existence of these methods,
it seems desirable to possess a procedure for con-
structing fully coupled unitary amplitudes from
amplitudes deseribing two sets of channels with no
coupling between the sets. The original amplitudes
might occur as the result of a calculation based
on the familiar methods mentioned above. Such a
procedure can probably be formulated in several
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A method for expressing unitary, coupled channel, scattering amplitudes in terms of amplitudes
satisfying “‘uncoupled’” or ‘‘elastic’ unitarity equations is presented. The method is given a physical
interpretation by relating the equations to equations of the Heitler type. It is shown how continuous
channels may be incorporated into the formalism, in some circumstances, without requiring the
solution of integral equations. The influence of inelastic channels on pure elastic scattering is men-
tioned briefly and a pseudoelastic form of the exact unitarity equation is discussed. No applications

of the method are undertaken here.

1. INTRODUCTION

N this paper, a method for expressing scattering

amplitudes satisfying coupled channel unitarity
equations in terms of amplitudes satisfying ‘‘un-
coupled” or “elastic” unitarity equations is pre-
sented. Many methods of expressing unitary scat-
tering amplitudes in terms of Hermitian amplitudes
already exist."”® These methods are attractive be-

* Supported in part by the U. S. Atomic Energy Com-
mission.

1 Present address: Department of Physics, The Pennsyl-
pania State University, University Park, Pennsylvania.

1'W. Heitler, Proc. Cambridge Phil. Soc. 37, 291 (1941);
See also M. L. Goldberger, Phys. Rev. 84, 926 (1951).

2 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

8 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467
(1960).

cause the Hermitian amplitude involved may be
chosen arbitrarily as far as the unitarity constraint
is concerned. Also, for two-particle channels, the
Heitler equation, when formulated in the angular
momentum representation, can be solved algebra-
ically.' The other methods require the solution of
linear integral equations.

Notwithstanding the existence of these methods,
it seems desirable to possess a procedure for con-
structing fully coupled unitary amplitudes from
amplitudes deseribing two sets of channels with no
coupling between the sets. The original amplitudes
might occur as the result of a calculation based
on the familiar methods mentioned above. Such a
procedure can probably be formulated in several
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ways® and the particular method described in Sec. 2
is “interpreted”” in Sec. 3 by relating it to equations
of the Heitler type.

It is worth noting that the method can be reversed
to reduce the problem of solving a coupled many-
channel problem to that of solving two such prob-
lems for a partition of the channels into two smaller
subsets. Such a reduction may be desirable if, for
example, the two subsets involve two-particle and
three-particle channels, respectively. In Sec. 4, it
is shown that if one begins with unitary amplitudes
for channels described by a continuous parameter
and amplitudes for discrete channels, then the coupl-
ing between the two sets of channels can be intro-
duced and the fully coupled amplitudes can be
calculated without any inversion of continuous
matrices (solving of integral equations) being re-
quired.

Finally, in Sec. 5 some of the quantities introduced
in Sec. 2 are related to familiar quantities in pure
elastic scattering. In particular, expressions are ob-
tained for the change in cot 8, where § is the partial-
wave phase shift, due to the coupling to inelastic
channels. Also a pseudoelastic form of the exact
unitarity equation is discussed and related to the
process of diffraction scattering.’®

2. THE DECOUPLING PROCEDURE

The quantities of interest are the reduced matrix
elements of the scattering operator, T, which satis-
fies the unitarity equation

T — 7" = 2T'T. (2.1)

Denoting all variables except the total four momen-
tum, P, by 1, j, --- , ete, the reduced matrix
element, ¢;;(s), where s = P? is defined by

(P — P)tu(s) = (P, i [T\ P, ).  (2.2)
It is customary to either show® or assume’ that the

¢ For example, the uncoupled phase method of M. Ross
and G. Shaw, Ann. Phys. (N. Y.) 9, 391 (1960) is motivated
by considerations similar to those presented here. For the
extension of this method to the relativistic case and further
references see P. Nath and G. Shaw, Phys. Rev. 137, B711
(1965). Another interesting approach, albeit an approximate
one, is that of K. Gottfried and J. D. Jackson, Nuovo Cimento
34, 735 (1964); see also J. S. Ball and W. R. Frazer, Phys.
Rev. Letters 14, 746 (1965).

s R. Glauber, Lectures in Theoretical Physics (Interscience
Publishers Inc., New York, 1958), p. 315.

¢ M. L. Goldberger and K. M. Watson, Collision Theory
(John Wiley & Sons, Inc., New York, 1964), Chap. 10, pp.
593, 609, 638, 650. An excellent set of references may be found
at the end of this chapter.

7 8. Mandelstam, Phys. Rev. 112, 1344 (1958); M. L.
Goldberger, M. T. Grisaru, 8. W. MacDowell, and D. Y.
Wong, ibid. 120, 2250 (1960); M. Muraskin and K. Nishijima,
ibid. 122, 331 (1961); E. J. Squires, Strong Interactions and
High Energy Physics, edited by R. G. Moorhouse (Plenum
Press, New York, 1964), pp. 30-32.

t;;(s) can be defined below their respective physical
thresholds in such a way that for all s greater than
the lowest threshold, s, say, of any channel coupled
to t;;(s) the extended unitarity equation,

tii(8) — ti:(8)* = 20 D t(8)* 8*(Pn — Pi)tui(s),
" (2.3)

holds. The summation symbol denotes the appro-
priate combination of sums over discrete variables
and integrals over continuous variables required for
the insertion of a complete set of states between
the scattering operators on the right-hand side of
(2.1). For strong and electromagnetic interactions
time reversal invariance® can be invoked to show
that the variables 7, j, --- , etc. can be chosen to
make #,;(s) symmetric,’ in which case the left-hand
side of (2.3) is equal to 2¢ Im ¢;;(s). If the ¢,(s)
are gathered together in a square matrix, f(s), which
may be continuously infinite or partly so, and if
the integrations required to eliminate the delta func-
tions on the right-hand side of (2.3) are performed,
thereby generating phase space factors which may
also be gathered into a diagonal matrix, R(s), then
the unitarity equation reads

f(s) — f(8)* = 2i f(s)* R(s) f(s). 24)

It is to be understood that the indicated matrix
multiplication includes all those summations and
integrations left over after the delta functions in
(2.3) were eliminated. Finally, it should be remem-
bered that each diagonal element of R(s) vanishes
below the physical threshold of the particular chan-
nel being desecribed by that element.

Now suppose that of all the channels contributing
to (2.4), a certain subset is more interesting than
the rest. Denoting that subset by the subseript 1
and the remaining channels by the subscript 2, it
is always possible to arrange f(s) and E(s) so that
they have the form

fu(s); flz(s)] . R(S) = [Rl(s)’ 0

f21(s); f2e(s) ’ 0, Rus)

In such a circumstance where interest is focused
on the submatrix f,,(s) the following theorem is
interesting.

f(s) = } - (25

Theorem: If the matrix functions h,.(s), k. (s),
and g.,(s) satisfy the relations

f12(8) = F11()h12(8);  far(8) = hai(8)f1i(s) (2.6a)

8 Time-reversal invariance may not hold in weak inter-
actions. See, for example, J. H. Christensen et al., Phys. Rev.
Letters 13, 138 (1964); J. A. Anderson et al., ibid. 14, 475
(1965); W. Galbraith et al., bid., 383.

9 Reference 6, pp. 351, 891.
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and
Faa(8) = g22(8) + har()fur(hsa(s), (2.6b)
then the unitarity equations
ful8) — fule* = 20 fuls)*
X AR(S) + hua(8)*Ba()har() Huls),  (2.7a)
hia(8) — hyls)* = 27 hyy(8)*Ra(8)g2e(8), 2.70)
has(8) — hou{8)* = 27 goo(8)*Ro(8)hi(8), 2.7¢)
and
22(8) — g2a(8)* = 20 g1y(8)*Rs(8)g:(s) 2.7d)

hold.

The proof of the theorem follows in a straight-
forward manner, albeit after some tedious algebra,
upon substituting Egs. (2.6) into (2.5) and then
(2.5) into (2.4). Since one can always choose h,;(s) =
hy2(s), the result (2.7¢) may seem redundant after
(2.7b). Tt is stated separately to emphasize that,
given (2.4)~(2.6), the symmetry properties of the
h and g matrices play no role in deriving the equa~
tions (2.7).

The interest of the theorem lies in the fact that
if the h matrices can be determined or estimated
then f,,(s) satisfies a closed unitarity equation with
a nondiagonal effective phase-space matrix, B,(s) 4+
hia(8)* Ry(8)hsyy(s). At the same time the estimation
of the h's is presumably facilitated by the absence
of unitary coupling of the #’s to the channels of
primary interest. It is clear, however, that the
estimation of the A’s will not, in general, be a simple
matter and can never be implemented until one
has established a clear physical interpretation of
the A’s and ¢’s. To this end, one must obtain further
algebraic consequences of the theorem.

The theorem can be applied to the channels 2
and 1 in the same way it was applied to channels
1 and 2. Thus one defines I,,(s}, ,:(s}, and g,,(s) by

fia(8) = Li(8)fax(s); far(8) = faa(8)laa(s) (2.82)
and
fu(8) = g1(8) + La(8)faa(8) Laa(s). (2.8b)

These definitions yield the unitarity equations

faa(8) — faa(8)* = 2¢ fan(s)*

X {las(8)*Ba(8)lia(s) + Ro(8) }faals), (2.9a)
L) — lu()* = 20 Lu(s)*Ri(s)gui(s),  (2.9D)
La(s) — Tu(®)* = 27 g, (s)*RBu()l(s),  (2.9¢)
g11(8) — gu(8)* = 24 g,,(8)*Ru(8)gu:(s)- (2.9d)

Now if (2.8a) and (2.6a) are substituted, in that
order, into the second term on the right-hand side
of (2.8b), then there follows

(1 — La{)hay{8))fuals) = gu:(s). (2.108)
Similarly,
{1 — hou(1a())foe(8) = gas(s). {2.10b)

Furthermore, if (2.8b) is multiplied on the right
by h:.(s) and (2.6b) on the left by [,,(s), then a
comparison of the resulting equations with (2.6a)
and (2.8a) yields

g11(8)P12(8) = Lo(5)gea(s).

Assuming the g’s to have inverses, one finds

Fao(8) = k12(8)g22(8), (2.11a)
La(8) = guu(8)kra(s), (2.11b)

where
kua(s) = kya(s)*. (2.12)

Substituting (2.11) into (2.10) there results the
integral equations' :

f1a(8) = guls) + gu(8)k:2(8) gea(8)las(8)f11(8) (2.13a)
and
f2(8) = gaols) + Qsz{s)kn{3}§11(3}"%13(3)f22<3)’ (2.13b)

The solutions of these integral equations express
the coupled matrix functions #,{s) and f..(s) in
terms of the uncoupled matrix functions, g,,(s) and
g22(s), and the real matrix functions, k,.(s) and
ke(s) = ki(s). The corresponding integral equa-
tions for fi.(s) and f,,(s) come from substituting
(2.11) and (2.13a, b) into (2.6a) and (2.8a). They
are

F12(8) = g11()k12(s)goals) + 911(8)k12(8) G2(8) k21 (8)f12(5)

{2.13¢)
and
F2(8) = gaa()kas(8)gn(s) + 922(8)ke1 (8) 911 (9)E15(8) a1 (5) -
(2.13d)

One can easily guess the correct form for the
analogous integral equations in which the kernels
on the right-hand side multiply the f’s from the right.

# Strictly speaking, these are integral equations only if
the channels require a continuous parameter for their de-
scription, Otherwise they are algebraic equations. The inter-
esting case in which channels 1 are discrete is treated in See. 4.



COUPLED CHANNEL SCATTERING AMPLITUDES 79

3. PHYSICAL INTERPRETATION

The iterative “‘solutions” of the equatioﬁs (2.13)
are

(3.1a)
he = g;;szgaz + gukiegakagnkiagee + -, (3.1b)

far = Gaskargn + Q’zzkzxgukugzzkngn + .-, (3-10)
and

fu=gu+ g’nkngzzkzxgu + o,

faz = a2 + gaokaiguikragas + - 3.1d)

If the nth terms in the series for f,, and f., are
denoted by ™ and {5377, respectively, while the
nth terms in the series for f,; and f,, are denoted
by & and fP, respectively, then the perturbative
unitarity relations'

2 n
B =2 N IR

k=1 r=0

(3.2)

are a consequence of (2.7d), (2.9d), and (2.12),
where f{ = fi7 = 0.

These equations suggest that £’ and f5’ include
contributions from those processes in which channels
2 and 1, respectively, never appear as an intermediate
state on the mass shell. This statement must be
qualified, however, with the comment that f{? does
not include all the virtual driving processes in fi;
as a glance at the higher-order terms in (3.1) a, d)
shows.’? The amplitudes 3’ and {3}’ are interpreted
as summing all those contributions from processes
in which the transition from channels 1 to 2 or
vice versa is not made more than once in an inter-
mediate process on the mass shell. Again the quali-
fication regarding driving forces applies.

The unitarity equations for £, £, f&', fsa are
satisfied by the solutions of the linear equations
of the Heitler form,"

O = by, + bR, (3.3a)
B = by, + RS + beRafss,  (3.3D)
D = by, 4 b RfY + b RofsY,  (3.3¢)
D = by, + buRafss . (3.3d)

On the other hand, from (3.1b, ¢),

11 These are nob quite the same as the “unitarity’’ equa-
tions satisfied by the terms of conventional perturbation
theory. See J. D. Bjorken and 8. D. Drell, Relativistic Quan-
tum Mechanics (MeGraw-Hill Book Company, Inc., New
York, 1964), Chap. 8, p. 160. . .

12 Jp particular the “unphysical” singularity structure of
f14 receives contributions from every term in the series (3.1).

13 Equations (3.3-(3.5) remain valid if the R on the
right-hand side of (3.3) are replaced by any G: such that
Im G; = R:. Such a replacement is desirable in a discussion
based on analyticity properties.

W= filkef;  fi = fekafiy, (34)
and upon substituting (3.4) into (3.3) and then using
(3.3a, d) in (3.3b, ¢), one obtains

biikizbes = bia. (38.5)

The equations (3.1)-(3.5) relate the quantities
G115 o2, K12, and ky; to quantities oceurring in more
familiar formalisms for constructing unitary secatter-
ing amplitudes and may, therefore, be said to suggest
the physical interpretation of the former quantities.
This question, which must be considered in some
detail in any particular application of the decoupling
procedure, is not discussed further here.

4. DISCRETE AND CONTINUOUS CHANNELS

To this point it has been assumed that whenever
matrix inversions were desired, they could be per-
formed. In many instances of physical interest'* this
is not the case, and it is worthwhile to ask if certain
of the previous results might be obtained without
recourse to all the matrix inversions that have been
formally employed. Thus if f,,(s) is a discrete matrix
of partial-wave amplitudes for two-particle channels,
while f;,(s) is a continuous matrix for the partial-
wave amplitude of a three-particle channel, then
inversion of (1, 1) matrices is routine algebra while
the inversion of (2, 2) matrices can rarely be carried
out in closed form if at all. It turns out that, for
the preceding sections, if matrix inversion is feasible
for one set of channels, the set 1 say, then it can
be avoided entirely for the channels, 2.

Thus the equations (2.7) can be derived from the
premises (2.6) if the channels, 1, are discrete buf
the equations (2.9b, ¢) must be modified by mul-
tiplication from the left by f..(s)* and from the right
by fu.(s), respectively. Equations (2.10) and (2.11a)
can still be derived, but (2.11b) and (2.12) must be
multiplied from the right by g..(s). Finally with
these modifications the integral equations, (2.13),
can be derived as stated and it remains to show that
they can be solved without matrix inversions of
(2, 2) matrices.

The solution of (2.13a) is trivial since it involves
only the inversion of & (1, 1) matrix

fu=Q0-— gnkmgzzkzl)'lgll- 4.1)

To solve for f,.(s), multiply (2.13b) from the left
by k,2(s) to obtain

Eiofar = kiagor + Funforkagiikisfee.

1 For example, the coupled systems (2n, 47), ete.
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This ean be solved for k,.f..;
kygfar = (1 — ;‘312923]521911)—1]9129'22-

Equation (2.13b) is then solved by substituting t'his
result into the right-hand side of (2.13b), which

yields
fzz = g2 + 922’921011(1 - kngzzkzxgn)ﬂkmgzz- (4-2)

The equations (2.13¢, d) may be solved in a similar
way. Note that (4.2) has the form of (2.6b)

fao = @2z + Goskorfrikizgae,
since it follows from (4.1) that
fu = 911(1 - kugzzkngu)-x-

Finally since the derivation of (3.5) requires a
matrix inversion in one set of channels only, it can
still be carried through by looking first at k., and
then using the symmetry k,, = k..

5. TWO-PARTICLE ELASTIC SCATTERING

The simplest case for f,,(s) is that of partial-wave
elastie scattering in one two-particle channel. For
convenience consider the common circumstance in
which conservation laws allow one to work with a
single funection, f,,(s), of one variable. If there
exists a pure elastic interval, s, £ ¢ < g, in which
no inelastic processes can occur, then in that interval
both g,,(s) and f,,(s) have the form

6.0
(5.2)

gu(s) = €' sin 8°/R, = [R,(cot &° — )],
fu(s) = 3‘.& Siﬂ 5/R1 = [Rl(cot é — 'l:)]_l.

Upon substituting these expressions into (4.1), a
little algebraic manipulation yields

R; cot & = Rl cot 50 el kmgggkz}. (5-3)

This equation ean be used to establish the influence
of unitary coupling to inelastic channels on such
low-energy parameters as the scattering length and
effective range. It is also clear from (5.3) how res-
onances below the inelastic threshold can arise from
strong coupling to the inelastic channel in this
formalism. Such a mechanism has frequently been
regarded as the explanation for the existence of some

GORDON N. FLEMING

of the higher resonances in pion and nucleon inter-
actions.'®

The exact unitarity equation for f,,(s) is, from
(2.7a) and (2.11a),

Ju—fi=2 ’fufz {B, + klzg':;Rzgazkzx}- (5~4)

On the basis of the discussion in Sec. 3, the function
bykrsgee = H,, satisfies'®

Hu = bu -+ ’imezgzz, (5-5)

and may be interpreted as the matrix amplitude
describing the inelastic scattering that would occur
If, after initial absorption, the system never returns
to the elastic channel in a mass-shell intermediate
state. This situation is just that which yields pure
diffraction scattering in the elastic channel if no
elastic driving forces are present. Consequently, on
the basis of the optical theorem!® one may expect
the approximation of replacing H,,R,H,, by the
appropriately normalized inelastic cross section of
a diffraction scattering model to be valid at high
energies. With a given b,,, then, the construction
of a solution to (5.4) yields an amplitude incor-
porating corrections to the pure diffraction model.
Such a method may have a bearing on recent studies
of the high-energy behavior of the real parts of
elastic scattering amplitudes.”” Finally, it would be
interesting to use (5.4) to investigate the influence
of inelastic unitarity in the low and medium energy
range through the N/D formalism since (5.4) has
the algebraic form of pure elastic unitarity.®

*J. 8. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204
(1961); L. F. Cook, Jr. and B. W. Lee, Phys. Rev. 127, 183,
207 (1962); J. 8. Ball, W. R. Frazer and M. N: auenberg, Phys.
Rev. 128, 478 (1962). For the general influence of closed chan.
nels on resonances see J. R. Fuleo, G, L. Shaw, and D. Y.
Won%efhys. Rev. 137, B1242 (1965),

18 Reference 6, p. 184.

17 W, N, Cottingham and R. F. Peierls, Phys. Rev. 137,
B147 (1965); N, N. Khuri and F. Kinoshita Phys. Rev. 137,
B720 (1965). A recent preprint with further references is
Y. 8. Jin and 8. W. MacDowell, “Phase Representation and
ngh Energy Behaviour of the Forward Scattering Ampli-
tude,” preprint, Institute for Advanced Study, Princeton,
New Jersey (1965).

¥ The N/D formalism has been generalized to allow for
the influence of inelastic channels in several ways. See, for
exam]ple, J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960);
R. Blankenbecher, Phys, Rev. 122, 983 (1961); G. Frye and
R. L. Warnock, tbid. 130, 478 (1963). These various generaliza-
tions may not be consistent with one another. See M. Bander,
gggg) Coulter, and G. L. Shaw, Phys. Rev. Letters 14, 270
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The considerations of a previous paper are extended to the case of a general lattice. It is shown
algebraically why the Pfaffian and Onsager methods of solution of the Ising problem coincide only
when the lattice is planar, and that the problem is then a linear one. When the lattice is nonplanar
the Pfaffian method breaks down due to the appearance of unwanted negative signs, and it is shown
how the Onsager method compensates for this at the expense of making the problem nonlinear.

1. INTRODUCTION

N a previous paper,’ it was shown that two ex-
pressions, one the partition function for the
Ising problem on a rectangular lattice and the
other a Piaffian, were equal. The proof was algebraic
in character, but could be interpreted as justifying
the combinatorial approach which has been widely
used.” With certain types of edge conditions the
correspondence was shown not to be immediate and
the source of the disecrepancy was traced to the
appearance of the long-range bonds associated with
the imposition of eyclic or helical boundary condi-
tions. It was claimed that the same difficulty would
arise, although in a much more serious manner,
when an attempt was made to identify a Pfaffian
with the partition function for a lattice with a more
complicated topological structure. Such an increase
in topological complication arises whenever a suffi-
ciently large number of connections hold between
lattice points in a plane lattice, or when the lattice
is three dimensional. It is the purpose of this paper
to show in detail how the attempt to transform a
general Ising model partition function into a Pfaf-
fian will be defeated whenever the lattice is non-
planar. Nonplanar means that the set of lattice
points and the bonds conrecting them cannot be
arranged in a plane in any position whatsoever
without bonds crossing at points which are not
lattice points. It is not the long range of the bonds
in a nonplanar lattice which is significant, but the
appearance of crossing points which cannot be re-
moved by any continuous deformation of the lattice.
In Sec. 2 the algebraic relationship between the
Pfaffian and Onsager methods for a general lattice
will be discussed, ignoring the effect of edge condi-

1C. A. Hurst, J. Ma,th Phys. (N. Y.) 5, 11 (1964), here-
after referred to as I

*C. A. Hurst and H. S. Green, J. Chem. Phys. 23, 1059
(1960); P. W. Kasteleyn, J. Math. Phys. (N. Y.) 4, 287 (1963).
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tions, which now represent only an inessential com-
plication.

In Sec. 3 some topological aspects of this relation-
ship will be considered. Topological aspects of the
Ising model have already been extensively dis-
cussed®™, but I am not aware of any work in this
field which directly relates the Onsager and Pfaffian
methods.

2. ALGEBRAIC RELATIONSHIP BETWEEN THE
ONSAGER AND THE PFAFFIAN METHODS

An Ising model on a general lattice consists of a
set of NV identical systems, each capable of existing
in two states only, and arranged to form a regular
lattice in one, two or three dimensions. These sys-
tems may interact with each other, and the energy of
interaction of any pair of such systems is assumed
to depend only on the states of these two systems
and on nothing else. This means that we restrict
ourselves to the case of two body forces only. The
assumption that all the systems are identical could
be relaxed, and then the lattice would be regarded
as built up by the repetition of systems, each of
which is itself composed of several nonidentical
subsystems. Such a model has been econsidered,
using the Pfaffian method, in an earlier paper.’
However, in order to maintain simplicity, and be-
cause nothing essential for the purposes of this
paper would be introduced by this generalization,
the model described at the beginning of this para-
graph will be used.

So the state of a general lattice can be specified
by an N-tuple (s, - -+ , sy) with each s; taking the
values =1 only. There are thus 2" distinct states

3 H. S. Green and C. A. Hurst, Order~Disorder Phenomena
(Interscience Publishers, Inc., New York, 1964); hereafter
referred to as G.

4 8. Sherman, J. Math. Phys. (N. Y.) 1, 202 (1960); P. N.
Burgoyne, 4, thid. 1320 (1963).

5C. A Hurst J. Chem. Phys. 38, 2558 (1963).
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of the lattice. The total energy of the lattice will
be denoted by E{s;, +-- , sy} and the assumption
of two body forces means that

E(Sh . E J:;$:3n

My

"t 8w = M
apart from additional constants which do not de-
pend on s. The expression (1) implies that the level
of energy has been chosen so that the ground
state has an energy —3,.;|J ;] rather than 0.

All the information required to specify the type
of general lattice being studied is contained in ex-
pression (1), so that the fact that we are dealing with,
say, a two-dimensional square lattice with nearest-
neighbour interactions, or a three-dimensional cubie
Iattice with long-range interactions can be obtained
from the structure of the set of constants J,,.
This set of constants therefore expresses the top-
ological structure of the lattice and its bond con-
nections. Instead of there being :N{N — 1) distinct
such constants many of them will be equal. For
example the nearest-neighbour square lattice can
be specified by requiring that J;; = 0 unless § =
i+ lori=n N =7’ and then J;; = J. Only
a single eonstant i8 required in this case. The firgt
restriction that is usually imposed is that of trans-
lational invariance. This requires the energy of
interaction of two systems to depend only on their
relative positions. This means that J,; depends
only on the difference 7 — j of the indices 7 and j
and not on their separate values. The number of
independent constants is thereby reduced to 2N,
The next restriction is that the lattice is symmetric
under inversions so that J,; = J;, so that these
constants depend now only on j¢ — j|, the magnitude
of the difference. The number of constants is thus
reduced to N. The final restriction is that the longest
bond present is of length n with n < N, so that
J:i = O unless {£ — j1 < n. There are then at most
n independent constants J,; which we now denote
by Jy, +++ , J. This restriction is equivalent to
saying that the lattice is periodie with period n,
and means that the lattice can be regarded as made
up of a series of generalized “layers” each of length
n. Without this restriction it would not be possible
to regard the system as forming a lattice whatever
the arrangement of the individual subsystems. Al-
though n <& N, it does not mean that » must be
finite, as the example of the cubic lattice shows.
However, » must be asymptotically small compared
to N, for N large. Of sourse these restrictions may
need to be modified to take edge conditions into
account, but, following the remarks in the introduc-

tion, it is considered that the presence of edge effects
can be neglected for large N. This is in the usual
tradition of discussions on these problems, and has
the consequence here that the limits on various
surnmations that occur would be different with
different edge conditions, but that these differences
will be ignored.

The partition function will then be given by

Z = 8’“’2&1 o ’}V;Ei &X-i} (”gfkﬂ} {2}
or, alternatively,
N K
Z =1tr, - tr,, exp (E >, Jks,.%sj/fki") s 3)
i=) kwl

where now the quantities s; are regarded as com-
muting matrices in a 2*-dimensional product space
and tr,, means that the trace is taken over the
matrix 8; wherever it oceurs.

The QOguchi transformation can be employed to
reduce the problem of evaluating (3) to the com-
binatorial problem of counting closed polygons drawn
on this lattice. An alternative expression for this
combinatorial problem is used as the starting point
for the Pfaffian method. Instead of considering a
set of N dichotomic variables s, +-- , sy, regarded
as commuting matrices in a direct product space,
we consider instead a set of nN anticommuting
matrices, with a typical member o'} corresponding
to a bond joining lattice point j to lattice point
i+ k.

Then we define

= Tr H 1+ Z (0502} + marie i)
F=i
+ Zxa‘*}vff’i +L @

where z, = tanh (J.,/kT), and the notation Tr
means that the trace is taken over all matrices
appearing in the expansion of the product. The
dots indicate terms involving fourth and higher
even-order terms whose precise structure can be
inferred from the later Eq. (6). Z' has been con-
structed with the object of defining the same com-
binatorial problem as does Z. The matrices o
satisfly the anticommutation rules
#;k)g’yf’) + (k’) (k} { (k)g'? )}* - 2555 ékk‘ﬂ {5}
It is well known® that Z’ contains only those terms
which contain even powers of each of the matrices
0¥, and hence, can be regarded as the generating
functlon of closed polygons drawn on the lattice
using the bonds as sides and the lattice points as



ISING PROBLEM II.

vertices, so long as all the terms appear with an
explicit positive sign. This requirement may be
incompatible with the relations (5), and so it is
with this question that this paper is concerned.
Z', if it can be evaluated, will then be proportional
to Z because of the identity of the combinatorial
problems which they pose. The use of Pfaffian
methods to evaluate Z’ has been discussed else-
where®, and will not be described here, except to
remark that the introduction of anticommutation
relations is essential and they cannot be replaced
by commutation relations.

We now show how (3) and (4) can be reduced to
expressions which have a very similar form so that
any differences can be readily interpreted. First of
all we can write (4) as

N n
zuﬂ&H[Ha+wm¢1

i=1 L k=2
X g (A + @00 ] N C)

for if the products over k and I, for fixed j, are
multiplied out, and the property ¢ = 1 used, then
Eq. (4) is regained. The order of terms in the
products over k and ! must be opposite to that
in which they occur in Eq. (4). This requirement
follows from the relations (5). The structure of
Eq. (4), and hence of Eq. (6), is such that pairs
of bonds are not correlated so that any bond can
appear with any other bond. This agrees with the
assumptions made about the energy E(si, -+ , sx)
in Eq. (1). It is necessary for definiteness to choose
a standard ordering of the anticommuting quantities,
although, as will be shown later, the question of the
equivalence of the two methods will be independent
of this ordering. The order chosen is such that in
Eq. (6) the product is written from right to left
in order of decreasing ! and then in order of de-
creasing k& for fixed §, and finally from right to left
for increasing j.

The factors {1 4+ ¢¢f)) are equivalent to
s-symbols, being of 0 if ¢} # ¢}, and having
the value 2 if they are identical. The argument

is the same as that used in I. This means that o{"

can be replaced by ¢{};-; in Eq. (6), and we denote
this matrix by ¢;.:. In this reduction the order
adopted above is essential. Now Eq. (6) can be
replaced by

Z' = Tr ﬂ [I”I 1+ x,,a”w;)]

i=1 k=1

@

with the product in standard order, and constant
multiplying factors being dropped. The Oguchi trans-
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formation applied to Eq. (3) produces exactly the
same expression for Z except that now all the
matrices are the commuting quantities s;.

The next step in the Onsager method is to re-
place Eq. (7) by an expression involving only
2" X 2" matrices rather than those of dimension
2" % 2", This step is effected by introducing the
partial density matrices of Schultz, Mattis, and
Lieb®, following the approach used in I. We define

PM(UMH; Tty GN)
M n
= trv; e t‘rvx H [H (1 + xbo';'-l»ko'k)jl
i=1 L &=1
(8)
Po = 1,
so that
PM+1(0'M+2; Tty VN)
= oyn H (A + 2osrsr10204)Pu. ©

k=1

By the same argument as used in I, only n o-
matrices ean appear in any P, so that it is suffi-
cient to use a 2" X 2" representation. This means
that f{ M = m +mwithl <m <nand 0 <
r < p = [N/n], we may denote the matrices o1,

‘g TMaas1 by Omety *°° 3 Ony T1y *°°
o1 and adopt the representation

t Om=1) Tmy

gi=7X7TX - X7XeXdX"»" X9

(n terms)
with

[0 1} [ 1 0} [1 0}
¢ = , T= , &= ,
10 0 -1 0 1
and o appears in the jth place.

We may write Py, as

n

Pior = trorgey II (1 + Zicperoiohiy)

k=m+2

m+1

X H (1 + 55»+l—m—1010'7’n+1)(AM + BMO',,;;H);

Lmel

1)

with the products written from right to left in
order of decreasing index. The expressions A4, and
By contains products of the matrices of,4q, <+ 5 o
of even and odd order, respectively. On taking
the trace over o.,, and introducing the number
operator N,.; which counts the number of times

s T, D, Schultz, D. C. Maitis, and E. H. Lieb, Rev. Mod.
Phys. 36, 856 (1964).
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Oms1 Appears in Py, Py, can be written as

Py |0) = [ — N.) + z.N,]

X H (1 + ixn+k—m—1°'kpm+l)

X TI ( + i@rmiotomed)Pu [0,  (12)

l=m+2
where
pr=1XTX e XTXpXEX o+ X 8,
with
P —1
p =
1 0
in the jth place, and |0) is the vacuum state cor-

responding to all the spins being directed upwards,
and satisfying

with
N; = 31 + to;0) = 31 — 7). 13)

In Eq. (12) the factors are now written in the
same order in which they appear in Eq. (4). Finally
using the same arguments as in I, we have

Z' = (0| v* |0}, (14)
where
” n—1
V = H [e-—iK.'v.p,.< H e:’K:u—uupn
mm] k=n—-m+1
X H eiKzam+lﬂn):] , (15)
i=1
where K; = J,/kT and tanh K* = ¢ *. (We

ignore edge conditions and so suppose that p is
an integer.) The corresponding expression obtained
using the Onsager approach on (3) differs from
Eq. (15) in that the product ¢o;p,, is replaced by
8:8... A suitable definition of s; is

=X X XXX X - X35 (16)

so that

8i8m = 101Ti—1 *** Tms1Pmy for 1> m, a7
= 10 Tm—1 *** Ti1+1P1, for I < m.

This means that in the Onsager method the ex-
ponents are of higher order than the second if long-
range bonds are present, i.e., if [m — ] > 1. Such
a case is called nonlinear, if, in the spirit of I we
call a quadratic exponent a “linear” term. However,
the presence of long-range bonds is not a sufficient

condition for nonlinearity because the expression
(14) can be equal to (3) even when nonlinear ex-
ponents occur. This is because the r-matrices have
eigenvalues =1 only, so that if Eq. (15) is expanded
in powers of x; the presence of additional 7-factors
can only mean that some terms appear with a
changed sign. But the difficulty with the Pfaffian
method is just that the sign of certain terms is
incorrect, and this suggests that the function of
the r-matrices is to compensate these incorrect
signs. In the next section, the conditions under
which no r-factors are required, or equivalently,
when they cancel each other, will be derived.

3. TOPOLOGICAL BASIS FOR THE EQUIVALENCE
OF THE TWO METHODS

In order to compare the two expressions, we will
consider a general point of the lattice whose label
is n 4+ m and consider the contribution to Eq.
(14) which comes from all factors between m 4+ m
and (r 4 1)n + m. These factors are

H {[(1 - Ns) + ana] kI:Il (1 + ixn-bk—ao'kpa)

s=1

x II a +ix,_,a,p.)}

leg+1l

x 11

8’ mm+1

{[(1 - Na') + anl']
X JI (0 + izarronp.)

X VISI“ a+ 7:171'-.'0'1'98')}‘ (18)
When Eq. (14) is expanded in powers of the z’s
and the vacuum expectation value taken, the only
terms which survive are those which contain prod-
ucts of o3, p5, and 4p,o, for each m, and such
products can then be replaced by 1. Therefore, the
evaluation of Eq. (14) is completed when all the
matrices have been paired in this way. Because of
the anticommutation relations (5), a change of
sign will occur whenever two matrices are inter-
changed. With each matrix factor ¢, coming from
a lattice point rn 4 s, say, one may associate a
bond emanating from this point, and because no
bonds can be longer than =, it must terminate
at the lattice point (r + 1)n + m) if s > m, or
™ + m if s < m. Hence, for each ¢, appearing in
the expansion of (18) there will be a corresponding
ipn in the factor s = m of (18). This matrix ip,,
appears either with a matrix o, in a term

(1 _F italpm)
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in which case it represents a bond joining (»+1)n+m
to (r + 1)n + 1, or it appears with the matrix o,
in the term

(1 - Nm) + x:Nm,

when it represents a bond joining (r + 1)n + m
to (r + 2)n + m.
So if we write Eq. (18) in the form

[ = Na) + 2N + G0pn)e’ + 0n0’),  (19)

where e, ¢ represent terms with an even number
of matrix factors, and o, ¢’ terms with an odd
number of matrix factors, the various terms can
be interpreted graphically. The term ¢ can be
regarded as corresponding to an even number of
bonds terminating at (r + 1)n 4+ m together with
an even number of bonds which terminate else-
where, and o’ as an odd number terminating at
(r + 1)n + m together with an odd number term-
inating elsewhere. As this whole expression must
act on the vacuum state the only terms which
survive in (19) are those contained in the expression

(ee’ + 00’) + z,0.(0¢" + e0),

and then these four terms are also readily inter-
preted: (1) ee’ represents an even number of bonds
going into (r + 1)n + m and an even number going
out; (2) 00’ an odd number going in and out; (3)
z,0,0¢ an even number going in and an odd num-
ber going out, including one from (r 4+ 1)n + m
to (r 4+ 2)n + m, and z,0,.60" is similar.

So we can see how the expansion reproduces
the bond connections, as of course it must. This
classification of the bond connections given by the
expansion of (14) can be represented as a linear
graph of the type already used in G and which is
depicted in Fig. 1. On a straight line we place N
clusters of points with each cluster containing an
even number of points, at most 2rn in number.
From each point in the cluster emanates a bond to
terminate at a point of another cluster, and the
points in the cluster are ordered in the same way
as the factors in (4). This means that a bond con-
necting rn + m with (r + 1)n 4 m must start
from the left-hand point of cluster rn 4+ m, and so
on. The virtue of this diagram is that the number
of points of intersection of these lines gives the
number of sign changes resulting from interchanges
of the anticommuting quantities ¢ and p. The proof
of this fact is not difficult and has already been
given in G. Now, as it is evident that the expansion
of the Onsager form will produce no changes of
sign because only commuting quantities appear,
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Ne—ere —_ /

Fic. 1. A linear graph.

the two methods are equivalent if the total parity
of this graph is even, i.e., if the number of crossing
points is even. The number of crossing points can
be altered by interchanging points within a cluster,
and such interchanges are equivalent to inter-
changes of factors in Eq. (6). The consequent change
in the parity of the number of crossing points cor-
responds exactly to the changes of sign arising from
an interchange of anticommuting quantities. The
original graph is a nonplanar graph if the number
of crossing points is nonzero, but it may be possible
by suitable interchanges to remove all the crossing
points so that the graph is now planar. In that case
the new expression Z”/ obtained from Z’ by this
reordering will no longer contain any explicit neg-
ative signs, and so will be identical with Z, i.e., the
Pfaffian method is applicable if Z'’ is used instead
of Z'. Such interchanges of points within a cluster
can be regarded as a topological distortion of the
original linear graph. If we coalesce together all
the points of the cluster belonging to a single
lattice point, we can order the bonds according to
the angle, reckoned in a clockwise direction, that
they leave the lattice point, and the parity of the
graph is the same as that of the original linear
graph. Any deformation of a bond which does not
change the order of its end points will not change
the parity of the graph, and any deformation what-
soever can be built up from deformations of the
bonds and interchanges of order within a cluster.
Because the connections of this linear graph are
the same as that of the original lattice, this graph
is clearly a topological deformation of the original
lattice graph. So, if after suitable changes of points
within a cluster no further changes in crossing num-
ber are introduced on transforming back to the
original lattice, it is possible to argue directly from
the nature of the bonds on the lattice to the ap-
plicability of the Pfaffian method. For if the graphs
on the lattice are all planar graphs, there exists
an ordering of points within each cluster so that
the Pfaffian method works. An explicit determina-
tion of the appropriate order and a direct proof
of the absence of negative signs was given in G.

As every graph, whether planar or nonplanar,
can be represented as a graph in three dimensions
without crossing points, it is always possible to
remove crossing points by a three-dimensional de-
formation, and conversely, three-dimensional graphs
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G
(a) {b)
Fia. 2. Basic nonplanar graphs.

on a lattice correspond when transformed back to a
linear graph to graphs with crossing points. Thus
it is linear graphs which are such that they cannot
be transformed to planar graphs which correspond
to Ising models for which the Onsager method
becomes nonlinear and for which the Pfaffian method
introduces irremovable negative signs. This result
goes beyond the statements made in G and by
Dychne and Rumer’ where it was stated that a
uniform reordering of points in a cluster (i.e. the
same reordering for every lattice point) would not
help the Pfaffian method. Here it is demonstrated
that even a nonuniform change will not do.

The necessary and sufficient condition for a graph
to be nonplanar is simply expressed by a theorem
of Kuratowski® which states that the presence,
as a subgraph, of either of the two graphs depicted
in Fig. 2 (or of a subgraph which is homeomorphic
to either of them) is all that is required. It is evident,
as shown in. Fig. 3, that both the next-nearest-
neighbor problem for a plane rectangular lattice

o d ’4/
A Fld
/18
3 I"” —— 'l"”

(@) ) (b)

Fre. 3. Subgraph of type Fig. 2(a) for (a) next-nearest-neigh-
& pbor pr%%lem, (b) cubic lattice. .

7 A. M. Dychne and J. B. Rumer, Forschr. Physik 9,
500 (1961).

8 C. Berge, The Theory of Graphs and Iis Applications
(Methuern and Company Ltd., London, 1962), é)ha.p. 21.

and the nearest neighbour problem for a cubic
lattice contain a subgraph homeomorphic to sub-
graph 2(a), and therefore, cannot be solved. How-
ever, this not quite what is required for the non-
equivalence of the two methods. It is not sufficient
that the graph be nonplanar but rather that there
always exists a subgraph with an odd nimber of
crossing points no matter how the original graph
is distorted. A short proof that the two graphs of
Fig. 2 always contains at least one closed polygonal
subgraph with an odd number of crossing points
is given in the Appendix. This means that although,
for example, Fig. 2(a) cannot be an Ising model
graph because its vertices have an odd number of
lines incident upon them, it always contains proper
Ising model graphs as subgraphs for which the
sign will be incorrect.

It is interesting to see how the Onsager method
enables the incorrect signs to be compensated ex-
actly. As mentioned earlier, the factor s;s, differs
from 10:p, by the addition of r-factors, and for
{ > m there is one for each lattice point between
rm -+ m and rn + 1. Now because

Ti }O> = IG>: Ti0; !0) = —0o; §0>: (20)

a r-matrix in a factor associated with a particular
lattice point counts the number of bonds of the
jth type emanating from lattice points with lower
index than the given lattice point. As every bond
with index lying between m and ! must terminate
between m and I it must therefore cross the bond
joining n and l. Hence the change in sign which this
entails in the Pfaffian method is just compensated
by the additional r-factor. For I < m the argument
is slightly different. We can write

818m = —UPi1Ti4r *°° Twm—10m

] —'l:pzTHl e T,,._la',,,U, (21)

where
U =2 TiTo * " The

The addition of the factor U to this expression
makes no difference because the U-matrix counts
the lotal number of bonds emanating to the right
of the factor s;s,, and this must be even.

But

—ipiT1a1 * "t Tme1OnU

(22)

80 that once again the Onsager expression counts
the number of bonds terminating between I and m,
although in this case the bond joining m to ! is

= =Ty 0 T1Th °°° Tme1Omy
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weighted with a negative sign. For I = m, a similar
situation arises, for we can write

(1 = N,) + 2N,
= (1 —N,) + 2.N.U

= (1 - Nm) - anmTI ot (23)

Tm—le+l t Tn;
because
TuNm = —Na.

Equation (23) means that a factor counting the
number of bonds terminating between rn + m
and (r + 1)n + m can be introduced to compensate
for the crossing points, but the bond again has
negative weight. But the combined effect of (22)
and (23) is to compensate each other because all
such bonds cross the lattice point with label (r + 1)n,
and there must be an even number of such bonds.
Hence, the minus signs cancel.

4. CONCLUSION

So we see how the nonlinearities introduced serve
to correct the errors arising in the Pfaffian method
from the topological structure of the model. These
nonlinearities are sufficient but not always neces-
sary. In ¢ it was shown how a particular choice of
ordering within a cluster can always be found such
that any planar graph (even if it contains long-
range bonds) can be solved by the Pfaffian method.
Such problems are therefore nonessentially non-
linear, whereas those corresponding to nonplanar
graphs are essentially nonlinear and require a more
sophisticated approach.

As Kasteleyn® mentioned, for graphs of genus
g > 0, the Pfaffian method can be employed, but
4° Pfafhans are required. The insoluble problems
are those with ¢ = . So from this point of view
an essentially nonlinear problem may still be soluble
in terms of a sum of linear problems, but when
this sum is infinite the result is of little use. It
would be interesting to investigate whether a further
classification of nonplanar graphs for ¢ = « ecan
be made which also characterizes the algebraic
structure. Intuitively the next-nearest-neighbor
problem on a rectangular lattice should be much
simpler than, for example, the cubic lattice but
the difference has not yet been explicitly expressed.

It appears from this discussion that the question
of whether graphs form knots in three dimensions

THE GENERAL LATTICE 87

is not relevant, for the condition of bonds crossing
above or below each other does not enter very
naturally. This speculation does not accord with
remarks made by other authors.*
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APPENDIX

In the graphs of Figs. 2(a) and 2(b), there are,
respectively, six and twelve closed polygonal sub-
graphs, each of which includes every vertex. The
problem is to show that no matter how the original
graph is distorted in the plane, at least one of
these polygonal graphs from each set has an odd
number of crossing points. This is not completely
trivial because the parent graph may have an even
total number of crossing points.

If we have a closed polygonal graph, and con-
tinuously deform one line, keeping its end points
fixed, the parity of the total number of crossing
points cannot change unless a crossing point passes
through one of these end points. This means that
the two lines meeting at a vertex must change
from noncrossing to crossing, or vice versa. This
follows from a theorem of Whitney’s.?

In the case of Fig. 2(a), there are five polygonal
graphs of odd parity and one of even parity and
every pair of lines meeting at a vertex appears in
two polygonal graphs. If any such pair is made to
intersect itself, the parity of the graphs containing
these lines is changed. Consequently, the number
of graphs of odd parity can only change by an even
number. Hence, the number of graphs of odd parity
can never be made zero.

In the case of Fig. 2(b), every pair of lines meeting
at a vertex is also contained in two polygonal graphs,
but this time the two graphs are of opposite parity.
Hence, as the parity of each one is changed by
making these lines cross, there will always be at
least one graph of odd parity.

9 H. Whitney, Compositio Mathematica 4, 276 (1937).
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The asymptotic form of the phase shift is derived for strongly singular potentials for large com-
plex A, larg Al < ir, and real k. This result is valid also for usual (regular) potentials. It is shown
also that the S-matrix for strongly singular potentials must have an infinite number of poles in A-plane
accumulating asymptotically in a narrow region along the imaginary axis in the first and third quad-

rants.

1. INTRODUCTION

HE theory of scattering on strongly singular

potentials has been investigated in some gen-
erality in references.'’> The main results of these
works solved the problem of analyticity of the
S-matrix.

In this paper we intend to investigate the exact
asymptotic behavior of the phase shift §(A, k) for
large complex A, arg X\ fixed, and positive k for
strongly singular potentials. By a strongly singular
potential we understand a potential repulsive at the
origin and more singular there than the centrifugal
term. The method used in solving this problem is in
some respect, i.e., in the problem of uniform con-
vergence of the Jost solutions for large A as shown in
Sec. 2, close to the application of the WKB. method
to the similar problem for usual potentials.® Of
course, the problem is here more involved because of
the strong singularity of the potential. Unfortu-
nately, as is evident already in Ref. 3, it seems im-
possible to obtain the asymptotic form of s(), k)
using only these results. In order to solve this prob-
lem, we shall introduce a formula for the phase shift
in terms of the Jost solutions, which will enable us to
find out the asymptotic form of §(\, k) from the
asymptotic form of the Jost solutions. The final
result is given by (3.8). Of course, our method is
valid also for usual potentials. In this case (3.8) is
just the asymptotic form of the first Born ap-
proximation,

The only solutions of the Schrédinger equation
which we shall be using are the Jost solutions
fO\, Xk, 2) = £.(2) defined by

* On leave of absence from the University of Zagreb and
the Institute “Rudjer Bogkovig,” Zagreb.

 Present address: Institute of Physics, Torino, Italy,

i E. Predazzi and T. Regge, Nuovo Cimento 24, 518 (1962).

2 N. Limié, Nuovo Cimento 26, 581 (1962).

3 A. Bottino, A. Longoni, and T. Regge, Nuovo Cimento
23, 954 (1962).

L )

L1 =|ve+

1) ~ exp (Fik2).

(L.1)

For V{z) = 0, the corresponding Jost solutions
will be denoted by fo(\, £k, 2) = fo.(2). In (1.1)
k is positive and X = [\ exp (fw), 0 < & < %7
The potential V(2) is assumed to be a regular
analytic function in the half-plane Re z > 0, real
on the positive real axis, satisfying at the origin
the conditions

V@) >0, 0<z< (1.2)
2 1 l_ 2] 1 m 2
[ wepee [ wep (V(x)) o
-1 |7@)
fo W V) dx converge, (1.3)
£’V (z) is monotonic for 0 < z < zo. (1.4)

A few simple examples of such potentials are po-
tentials increasing at the origin exponentially, like
z™% a > 2, or like |In z[*/2°, @ > 2. At infinity
in the half-plane Re z > 0, we shall assume the
asymptotic behavior

V(@) = V@1 + u@)],
(1.5)

w(z) ~ uy/z, Rez— =,

where
Vaa(z) = Vo(e_“'/z“‘*l),

In order to derive a suitable formula for cal-
culating the asymptotic form of the phase shift we
start from the following expression’:

SO\, B)

e @ L gL
= exp fis(h — 1)) 28 exp {2”° [ f+(£)f-(£)}

V, and areal. (1.6)

88



PHASE SHIFT FOR SINGULAR POTENTIALS

Here z is an arbitrary point in the half-plane Re z > 0,
and the path of integration from the origin to the
point 2, denoted by C(0, 2), is also arbitrary, provided
that the integral exists. The same expression is valid
for V(z) = 0, with S(\, k) = 1 and the free Jost
solutions f,.(2). By dividing these two expressions
we obtain the formula

= j+<2}/}t0+{3}
S8 = ) et

. 1 1
X exp {2”" Jow [ms)f—(z) - fM(s)fo-(s)]dE
The phase shift is then given by

f+(2>/fo+(z)
RSy

3\ k) =

1 1
o PR SN s PR
T oo LOF® ~ @@l % @D
This is the formula which we shall be using in
Sec. 3.

2. ASYMPTOTIC BEHAVIOR OF THE
JOST SOLUTIONS

The first step towards the proof of the agymptotic
behavior of the Jost solutions (1.1) is to choose an
auxiliary differential equation as the asymptotic sub-
stitute for the Schrodinger equation. It should con-
tain those terms of the Schridinger equation which
are dominant for A — = and for all z. Both solutions
of this auxiliary equation must be known to us in
an explicit form and be simple enough to allow
simple estimates. The solutions of such equation
will be used for constructing the Green’s function
and the corresponding integral equation for the Jost
solutions. We expect that the Jost solutions will
approach asymptotically a solution of the auxiliary
equation, if it has been chosen properly.

The general type of the differential equation

Loua = | @0+ 3 (Z9) -

has two linearly independent solutions

u(z) = [Q(i)] exp {:F f Q® d£}~

If we choose Q°(z) so that it incorporates the
dominant terms of (1.1) and find out that the
additional two terms in (2.1) are insignificant com-
pared to @°(z), then all the requirements are sat-
isfied, and we can expect with confidence that the
essentials of the asymptotic behavior of the solu-

1Q"G)
5 Q) ] @ @D

22
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tions (1.1) will be reproduced by the singular solu-
tion of (2.1).

Comparing (2.1) with (1.1) we see that it is
natural to choose Q°(z) = V{z) + 2*/2® — K°. For
considerations in the region Re z > x,, where the
contribution of the potential is insignificant, it is
simpler to take Q*(2) = 2*/2®> — k*. We shall be
using both ftypes of auxiliary differential equations,
the first choice being used near the origin and the
second elsewhere. Let us discuss first the solutions
for the simpler second choice, They are

1
(%) - o

2 ]
comlraes [ [0 ) wala).
cses,o L\

1
(¥ - oo

2 ¥
X exp {iz’icz - [(% — k“) F z‘k] dé}
Cx{x,w) E

23)

Xz(z) =

e.(2) =

The cut for the double-valued square root is taken
as shown in Fig,. 1.

The sheet chosen is the one on which Re [(\*/2%) —
K]t > 0 on the positive real axis. Then the square
root tends to -7k as z tends to infinity along C.,,
respectively. For (1 — N\?/k*2")t we chose the same
cut and the sheet on which it tends to +1 and
(—1%) as z tends to infinity along C., respectively.
With these determinations of the roots we find that
at the origin x.(2) =~ Cz7™'% and ¢.(2) ~ C2*},
while at infinity along C. we have the asymptotic
behavior x. () ~ exp (Fikz) and ¢, (2) ~ exp
(=k1kz). These functions do not vanish in Re z > 0.

With the known construction of the Green’s fune-

Fia. 1.
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tion, we easily find the integral equation for the
Jost solutions valid outside the origin

M@ =x@ 255 [ @@

— X @IVE) + W) de',  (24)
where
W) = ——%—2;}*'7};—}2;? (2.5)
Introducing now the new function
9.(2) = 1.(a)/x.(d, (2.6)
we obtain the integral equation
9.() =1+ ey B
X V@) + WNg.() dz',  (2.7)
where

N L
Gu(z, ') = 2[()\2/212) — k2]§

X (1 — exp {——2 j;*(“') (-2; — kzy dg}). (2.8)

The Eq. (2.7) is the basic one for the study of the
asymptotic behavior of the Jost solutions in the
region outside the origin. Specially, for V{z) = 0,
this equation is valid also at the origin, and its
solutions will be denoted by g,.(2).

In the neighbourhood of the origin we have to
take the first choice of @*(z), and instead of the
auxiliary solutions (2.3) we have

1

xi+(2) = n exp (%:ilcz
() - oy — vy
2 }
#Landlre+F vl waa), eo
¢1:(2) = n ! exp (ﬂ:ikz
() = ooy — vea ey

T v {[V(E)%*%;—k”]%?ik}dg). 2.9)

These solutions are defined only for Re z > 0.
The analytic structure of the square roots appearing
in (2.9) is much more complicated. The new feature
. is that there are many more branch points. For
large )\, the branch points will be located only in
the small neighborhood ¢(\) of the previous branch

point A/k, and in the narrow strip 0 < Rez < n(A).
Both «(\) and »(\) tend to zero as A — «. Further-
more, it follows from the repulsive character of the
potential in the interval [0, xz,] that there will be no
branch points in this interval. All cuts starting from
the branch points in the neighborhood of A /k will
be taken to go to infinity like in the previous case.
The cuts from the branch points in the strip will
be taken to go to infinity parallel to the imaginary
axis and not intersecting the real axis. The choice
of the sheet is the same as in the previous case,
i.e., the real part of the square root should be positive
on the positive real axis. This analysis shows that
the path €', must approach the origin along the
positive real axis.

We construct now the Green’s function in terms
of the functions (2.9) in the same way as before.
After introducing the new function

7:1:(2) = £.(2)/x:.(2), (2.10)
the integral equation reads as follows:
01.(2)
=1+ oo Gz, YW, (2N (&) &2, (2.11)
where
Gy.(2,2) = 1

20VED + (/%) — K1

O I ECES S

(2.12)
and
1 5[ Ve — @D ]2
Wie) = — 32— 15 [V(z) F O =K
L VI + @) g

4VGe) + N/ — K

The obtained integral equations (2.7) and (2.11)
are of the type

hz) = fc G

+ Hy(z, 2Hh(z") d2’.
e, @)
If the kernel H,(z, 2’) can be majorized by a function
K ("), uniformly with respect to z on C(¢, «), and
if K.f (2') |d2’] = C:(¢) < =, then the Titchmarsh’s
lemma gives the following majorization for A(z):

k@] < Ci(®) exp {Co(D)}, 2 ECE, =). (2.15)

(2.14)
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Before applying this theorem to our integral equa-
tions we have to choose the paths C.(0, ). From
(1.7) we see that we need the asymptotic behavior
of both Jost solutions on the same path C(0, z,).
Hence, we have to choose C.(0, z,) = C(0, z,).
In Sec. 3 the path C(0, z,) will be chosen so that
it crosses the saddle point z, = (A\/k)ue, 0 < u, < 1.
Having in mind all the requirements imposed by
now upon C,(0, «), we choose them as shown in
Fig. 2. They depend upon A. The points 2, and 2z,
are independent upon |A|, and they are specified in
more detail in Appendix I. We are forced to introduce
these points because of the previous condition that
the path C.(2, =) must approach the origin along
the positive real axis.

In our case k(z) = g(2) — 1. The uniform major-
ization of the kernels is done in Appendix I with
the result that C,(¢, \) = C.(&, M) vanish for large
N0 < o < im at least like C/N* 2 S a < 1.
Hence, using this result in the formula (2.15) applied
to our three integral equations, we find that the
functions g(z) have the following asymptotic be-
havior:

9.2 =1+ p.(2), I|p.(a)] <C/,

2 € C.(z, ),
9o:(®) =1+ pou(2),  |pou(®)] < C/|N,

2 & C.(0, ©), (2.16)
0:1:(2) = 1+ pi.(2),  |p.(@] < C/NJ,

z € C.(0, =).

This asymptotic convergence for large A, 0 < w < i,
is uniform with respect to z in the indicated domains.
Hence, our expectations that the auxiliary functions
will reproduce in some domain the essential features
of the Jost functions for large A are fulfilled.

Apart from the asymptotic behavior of the func-
tions g(z), we shall need in Sec. 3 the majorization of
the asymptotic behavior of the difference g(z) —g,(z)
on C,(z,, =) and also its exact asymptotic behavior
in the interval 2z = (\/k)u,a < u, L v < u, < 1.
From the Eq. (2.7) we obtain the following integral
equation for this difference

0.0 — 0@ = [

C+(z,®)

G.(z,2)V()g.(2) d’

+ /. - G.(2, )W (2)g.(2) —gou(2)] 2’ . (2.17)
This is an integral equation of the type (2.14), and
we can apply the Titchmarsh’s lemma (2.15).

The estimates of the Green’s functions G.(z, 2’)

Fic. 2.

and of the function W(z") can be found in Appendix I.
It is shown there that the Green’s functions are
bounded by a constant uniformly over C.(z;, =),
and the integral [ |W(Z’)| |d2’| tends to zero for
large . Hence, the result is

lgz(z) - gh(’«')'

<e [ el <Clv.@l  @18)
where C does not depend on A.

The second inequality follows from the analyticity
and the asymptotic property (1.5) and (1.6) of the
potential.

The evaluation of the exact asymptotic behavior
of g.(2) — go+(2) intheregionz = \/k)u, 0 <u <1
is slightly more complicated. The leading term comes
from the first integral on the right-hand side of
Eq. (2.17). The detailed calculations are performed
in Appendix II, and the result is

_ V..
0:6) = 0O = L aled/e) - R

X [1 + a*(z)], z & C(Z,,, za)y

(2.19)

where
lo't(z)l < C/|)‘|

This completes our investigation of the asymp-
totic behavior of the Jost solutions. The formulas
which we shall need in Sec. 3 are (2.16), (2.18),
and (2.19).

The results of this section could have been derived
easily also for complex k. But since, however, the
calculations of Sec. 3 are restricted to real positive k,
we kept this restriction in this section also.

3. ASYMPTOTIC BEHAVIOR OF THE .
PHASE SHIFT

Now we turn to the problem of the phase shift.
In the formula (1.7) we shall consider first the
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integral from which we expect the main contribution
if the path has been properly chosen:

3 = 30, z)) + 5(zz, 20)

= k(f + fc<,.,..>)[f+(z)1f—(Z) - fo+(z)1fo-(z):| de

In terms of the functions g(z), the integral 3(z,, 2,)
can be written as

1

e, conns XX

z2) =k

1 1
X [g+(z)g—(2) - go+<z)go_<z>] dz

The product x.(z)x_(z) can be easily calculated
from (2.3),

x+(@)x-(2) s }
= A =1 O {2 I (%‘ - ’°) d‘-‘}'

Inserting this expression into the integral we obtain

2 %
5(22; za) = j;( , <-)Z\— —_ kz)
ME [y2 3
X exp {—2 f (% - k’) dg}G(z) &z,

where G(z) is a function given by

[g0+(2) — 94(2)1g0-(2) + [g0-(2) — g-(2)]g.(2)
9+(2)9-(2)90+(2)g0-(2)

(3.1

Gz) =

(3.2

Let us first investigate the integral 3(z,, 2,). In this
interval we have the exact asymptotic behavior
(2.19) of the difference g.(2) — go.(2). Inserting
these expressions into (3.2) and using (2.16) for the
functions g(z), we can write down the asymptotic
form of the function G(2):

_ V(2
R /ey =TT 4@,
I'Y(z)l < i l)‘l ’ z € C(z, 2,). (3.3)

After inserting this expression into (3.1), introducing
(1.6) and the new variable z = (\/k)u, the integral
3(z,, 2,) reads as follows:

S(ZP! zﬂ)

_ kY, f [z — 11t
A B e w3+ R[(1/67) — 174

1 }
Xexp{—2)\j; (:—,:—1> dv—x‘E‘u}
X [1 +7(—%u):| du.

(3.4)

Denoting the exponent by
1 Y u
h(u) =2f.. (?— 1) dv+Eu,
we see that the equation
0 = W(u) = —2[(1/u") — 1]* + u/k
has a positive solution

= 1/[1 + (/4.

Since A" (uy) > 0, we have a saddle point at ¥ = u,.
This is the point 2z, = (\/k)u, indicated in Fig. 2.
We have chosen the path of integration so that it
passes through this point up to the point 2z, =
W /E)ug, uy < u, < 1. We can use now the known
asymptotic expansion which follows from the saddle
point method. The reader can find it for real N in
Ref. 4 and see immediately for himself that it is
valid also for complex A with Re A > 0. In this
way we find

f ) [(1/u?) — 17}
o W (u/2) + KA/ — 171

S5 of)
(3.5)

The error represented by the second integral over
v(z) in (3.4) can be estimated absolutely. In this
integral y(z) and N\ are complex and h(u) as well
as the ratio in front of the exponential function
are positive functions. Hence, the absolute value
of the integral is smaller than the product of the
majorization of y(z) given in (3.3) and the integral
(3.5) in which A is substituted by Re A. Since this
last integral is of the same order as (3.5), we conclude
that the contribution of the integral with v(2) is
of the order O(1/\) compared to the leading term
(3.5). So the final result is

e—)Jl(u) du

Vofm 1
e 2a) = —57" (QX) [sinh p(u)]?

X [k—smh p(u):l “"“[1 + o( )] ,  (3.6)

where p(u) = h(u,) is given by
p(u) = cosh™ [1 + (&'/2k9)]. (3.7

Next, we have to estimate the integrals 3(0, z,)
and 3(zs, z,). Let us begin with the first integral
3(0, z,). The functions f,.(z) behave like the func-

* M. Evgrafov, Asymptotic Estimates and Entire Functions

(Gordon and Breach Science Publishers, New York, 1961),
pp- 19-20.
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tions x.(z) for large A uniformly with respect to
z & C(0, z;). By inspecting these functions defined
by (2.3) one can easily check that the uniform
behavior of their product is (2/e) (2\/kze)™™*. Hence,
that part of the integral 3(0, 2;) which contains the
function 1/f,,(z)fe_(z) can be estimated by const-
exp (—a |A| In |A) which vanishes faster than the
exponential function of [A|. That part of the integral
3(0, z,) which contains the function 1/f,(2)f-(2) can
be estimated by the same constant depending on A,
but the estimation is more complicated.

We can transform the function 1/f,(2)f-(2) in
the following way:

1 = 1 fos(22)fo—(25)
121 fo(@fo-(z2) (22
_ 1 [1 — (/K2 — V() /k2:!*
for(2a)fo-(22) 1 — (N/k%)

2 3
xeol-z [ [vo+%-v]a)

Go+(22)g0—(25) l:l O(_l_):!

X 0@ LT O
Using formulas (2.16), Appendix III, and the esti-
mate of the function 1/f,.(2)fo—(2), we are able to
obtain the simple inequality

< Cyexp [—a N In PIIVEIP

1
1+(2)f-(2)
X exp {-——-pa(z —2) fm » (v dx}

< €, exp [—a | In [A]L.

Hence, that part of the integral 3(0, z,) which con-
tains the function 1/f,(z)f-(2) under the integral
sign, can be estimated by the same constant:
const-exp (—a |A| In |A]), which was our assertion.
Let us look at the integral 3(z,, z,). Its estimate
can be made in a simple way using the same trans-
formation as in the case of the consideration of the
integral 3(z,, z,). We shall use asymptotic forms
(2.16), uniform estimate (2.18), and the notation
will be as in the formula (3.5). Combining these
together one obtains the following majorization:

[3(z2, 2)| < A €, ‘/;u’ exp {—Re Mi(w)} du.

The minimal value of the funetion h(u) defined on
the interval (0, 1) is at the point u,. Since u, < u,
its minimal value is at the boundary u, of the
integration. Using Theorem 3 of Ref. 4, we can
obtain a simple majorization of the integral 3(z,, z,):

13(22, 2,)| < Cs exp [—Re No(w,)].

Here the right-hand side tends to zero faster than
the integral 3(z,, 2z,) expressed as in (3.6) since
h(u,) > h(ug) = p(u).

Until now we have shown that the dominant term
of the integral 3(0, z,) is represented by (3.6). In
order to prove that the phase shift behaves for
large N just like the right-hand side of (3.6), we
must still show that the logarithmic term in the
expression (1.7) of the phase shift vanishes faster
than the dominant term (3.6). But the function
f+(@fo-(2)/1-(2)fo+(2) under the sign of the log-
arithm behaves like 1 + const - V.. (z,) as is easily
seen by inspecting formulas (2.6), (2.10), (2.16),
and (2.19). As generally 2, = (1 — ¢)A/k one can
always choose such a small e for fixed &k in order
to make the function V,(z,) decrease faster than
the funection exp [—Mp(u)] in the expression (3.6).

Thus, we have shown that the asymptotic form
of the phase shift is described for large A completely
by the expression (3.6). But the asymptotic form
(3.6) is valid in a larger domain than is specified
during the proof: 0 < w < }x. Namely, if we use
the unitarity condition of the S-matrix for real k:
S*(\, k) = 87'(A\*, k) and the corresponding relation
between the phase shifts §*(\, k) = 8(\* k), we
extend immediately the validity of (3.6) to the whole
half-plane Re » > O:

Vo (r\ 1 [}ﬁ"’_ R ]“
5% &) sy Lo o

X e"“"‘“)[l + OG)] ,  larg A < 3w

At the end of this section let us say a few words
about another possible form of the asymptotic form
(3.8). The conditions on the potential permit us
to represent it as the Laplace transform

Vi) = f i e—"%’—‘z)o(z) dt.

i\ k) =

3.8)

3.9

All the considerations can be repeated with the rep-
resentation (3.9), and the asymptotic form of the
phase shift will be in this case

_1 (1)*
2k \2\
—Ap{t})

X fu ) m dt [1 + 0(%)]

Here the integration cannot be taken over (u, ©)
since the function C(f) may increase faster than
any power of ¢ for large ¢ due to the high singularity
of the potential at the origin.

S\, k) =

(3.10)
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4. THE STRUCTURE OF THE S-MATRIX

It is known that the S-matrix is a meromorphic
function in the N\ plane in the case of scattering on
highly singular potentials."’* The S-matrix possesses
a simple property of the symmetry’

S\, k) = exp (2imN)S(—N\, k). 4.1)

Knowing the asymptotic form of the S-matrix in
the half-plane Re A > 0 derived in the last section,
and using (4.1), one can obtain the asymptotic form
of the S-matrix in the whole A-plane except the
neighborhood of the imaginary axis. We prefer to
consider the quotient of the Jost functions instead
of the S-matrix itself since this quotient is the func-
tion of A? only

R(>\2, k) = f(’\zf k)/fo‘z: —k), (4.2)

where f(\?, k) are the Jost functions. Using relation
R(\', k) = exp [—iz(x — DIS, k)

we can establish the asymptotie form of the function
R(\?, k) along any ray A = |\| exp (tw), @ 3 =+ ir:

R\, k) ~ exp {Fir(\ — 1)}

when Re\— £, 4.3)

The asymptotic form (4.3) cannot be extended to
the imaginary axis [for purely imaginary A the only
known property is |[R(\?, k)| = 1] because there are
an infinite number of poles and zeros accumulating
at infinity in the direction of the imaginary axis.
We shall prove this assertion supposing that there
exists a finite number of poles only, and then we
shall show the contradiction. Hence, let poles be at
the points =\, and the corresponding zeros at the
points ==2%. We suppose that all the poles are simple
which does not limit the generality. Then the func-
tion

T (=2

P()‘zs k) = H

RO K
o1 ()\2 _ )\:2) ( b )

is the entire function without zeros with the same
asymptotic form as the function R(\’, k). Let us
show that the order of the entire function P(\?, k)
is at most two. It can be easily proved that the
regular solution, Jost solutions and their derivatives
are the entire functions of the order two at most.
Since the combination of these functions determines
the Jost functions, the Jost functions may have
order two at most. By our supposition the Jost
functions have a finite number of zeros and can
be represented in the form f(\*, k) = C, [[.(\®

exp {Q.(\*)} according to Hadamard’s theorem,®
where [J. (\?) is a canonical product and Q,(\%
is the polynomial a, + A%b.. Hence, the quotient
of the Jost functions and consequently the function
P(N?, k) must be of order two at most. Thus using
Hadamard’s theorem
PN, k) = C exp (a + bN).

One can immediately see that this form of the func-
tion P(A\?, k) cannot join together with its asymp-
totic form. Hence, the number of poles and zeros
is infinite for the functions R(\%, k) and the S-matrix.

At the end of this section we shall show for example
the proof that the regular solution is the function
of the second order at most in N\. If we introduce
the function

Y(@) = V(@)™ exp {-— f " v dy} , oz < @,

then the regular solution ¢(\?, k?, z) can be rep-
resented in the form o(\? k%, 2) = y¥(x)u(\’, ¥, )
where the function u(\?, k%, z) is the solution of
the integral equation®

u()\zl kz’ x)

o [y li- oo ]

N1 ., 5[V
X{ . 16[V(y)]
1 V")

The kernel of this integral equation can be estimated
as in Ref. 2, and one obtains

[u(¥’, B, )| < Cy exp (C2 \])
which proves our assertion.
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APPENDIX I

We want to show in this appendix that the kernels
H,(z, 2’) of the integral Egs. (2.7) and (2.11) can

& M. L. Cartwright, Integral Functions (Cambridge Uni-
versity Press, New York, 1962), p. 20.
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be majorized by the integrable functions K(z') over
C. and that [ K(2) |d2’| vanish for large . All the
considerations here will be connected with the kernel
H(z, 2’) which corresponds to Eq. (2.11) since the
other kernel is the specification of the first. Hence,

1
H(E; Z) = 2['{;(2) + O\Z/zz) — kzli

2 3
x(i-ew{-2 [ [ve+X-e]a)
1 5| V-
x {"‘w ~ 16 [V(z) ¥ /) — k’]
1 V") + 63/ }
4V@E) + N/ - K

The variable £ appears only in the exponential func-
tion. Let us estimate first the exponential function
in order to get rid of the variable £&. We must prove
that the real part of the exponent has a finite upper
bound. We can rewrite the exponent in the form

A 2)*
Cx(§,2) (%2 k du

A . 1 ﬁ . e
- Cx(§,n {[V(u) +"? - k:l - (u2 —k ) } du.

(AL2)

We shall divide the path C.(, z) into four parts,
C, 21) + Clay, 22) + Clzo 2)) + Cilz,, ). The
real part of the first integral over the first part
of the path is positive since u is real. It is positive
over the second part if we choose it as the part of
the spiral r = 2, exp (A7), 7 2 0, 4 > {tgw, between
the point r = 2,, + = 0, and the point r = 2, exp
(4w), r = w. Namely, if &, z € C(z,, 2;) then the first
integral in (AL.2) behaves like A In 2/¢ for large A.
It can be easily checked that the real part of this
simple function is positive if 2, and 2. are specified
in the way mentioned. The first integral has the
argument o along the third part, hence its real part
is positive.

We have dz, = dr exp (ir.)/cos (v, — 1) along
C.(z, ®) where 1 = arg z. For the first integral
over the paths C,(z,, =). we have the form

f (Z\f — kﬂy _Mi)__dr.

z cos [r. — 7(r)]

+ (AL1)

(AL3)

If z is on the path C,, we can see that the real and
imaginary parts of the square root are positive.
Since |r, — 7| < 3w, 7, < 0, we verify that the
real part of the intergal (Al.3) is positive. If z is
on the path C., the real part of the square root
is positive, and its imaginary part is negative. But

now r- > 0, and we conclude again that the real
part of (AL3) is positive. Thus the first integral
in (AL.2) has always a positive real part. For the
second integral in (AlL2), it is easy to show that
its real part has the finite minimal value. Namely,
its absolute value on C.(2;, =) is bounded because
it behaves like [ |du| |V(@)|/][(\*/4*) — ¥°]] on the
part C.(z, =), and its real part is positive on
C(¢, #,) since V{u) is a positive function for 4 < z,.
After this analysis we c¢an majorize the exponential
function in (AI.1) by a constant.

To estimate the first factor and the brackets in
(AL1l), we shall use the following rule: If a and b
are vectors with an angle ¢ between them which
is less than =, then always holds |a +b| > a- s +
b:s = p|a] 4+ p |b], where s is the ort of the simetrale
of the angle . In the following let us choose always A
larger than some fixed Ao, Where |Ao/k| >> 1. Then the
first factor can be estimated by 1/p[V(z) + \[*/z"]}
on C(0, 2.}, by |2/ on C(z,, 2,) and by constant
on C,(z, «). The brackets of (Al.l) which are
denoted by W,(z) have three terms. Let us show
the majorization of the second term which is the
most complicated.

[ V'(z) — 2N'/a%) ]’
Viz) + N/Z) — &°

- [V’(x) - 20%3)]’[ V(@) + (\'/a) ]

L Vi) + (/) Viz) + 0\*/2% — K1~
The second factor in this expression can be estimated
by s constant depending on A, only. The denom-
inator of the first factor can be minimized by
p’[V(z) + |A|?/2°]°. Hence, the first factor can be
estimated by N[V'(z)/V(x)]? + M/z*. After esti-
mating other terms of W,(z) in the same way, we

obtain the majorization of the function (AI.1) in
the interval C(0, 2,) by

=@ +C|x|2/:c21* {f‘ + A”[ g(f)c)]

+ 4, sz}’(,i_x))l} ’ z € C0,2). (Al.g)

We shall separate the potential from the expression
W ,(2) in the following consideration. Thus we shall
obtain W(z) defined in (2.5). By pure algebraic cal-
culations one verifies that the difference W,(2) — W (2)
can be estimated by exp (—v» |z]) uniformly for A
larger than A\, and z & C.(z;, ). But the estimate
of the funetion W(z) on C,(z,, «) is simple:

BN 35 B
p N+ pb "

K, ()

W) <
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In this way we have the following majorizations:

Ky() = (N |zl/MDlexp (—» [2]) + (/N
z E C(zl! zﬂ)’ (AI.5)
Ky(?) = Mlexp (—» [z) + (B/[z])],

2 € Culz,, ).

In this way we obtained the function K(2). It still
remains to be shown that the integral of the function
K(2) vanishes when X tends to infinity.

./;*(o'm) K(Z) ldz' - >/;(0.l
+ K(e) el + [

C(z1,2q)

K.(z) dzx

Ky(z2) |dz|.

Cx(zq,)

(AL6)

It is easy to check that the second and third integrals
on the right-hand side vanish like 1/[A| for large A.
We must use expressions (AI.5) and the fact |dz| <
const-djz| on C,. Let us show now that the first
integral vanishes for large A. We shall denote by
R(z) the expression in the brackets in (AIL.4). We
have

2

J [V(x) + J—E]
[[—re 1 e,
0 (:V( ) + J_Eil [V(x)]}

V(x) P R(z)
+
f {:V( ) + .I_J_J [V(x)]*

, B(2) dz

i

dx,

where z, is the solution of the equation z*V(z) = ||
As we postulated the monotony of the function
2’V (z) at the origin, we are sure that there exists
only one z, for large A. Now we have

" __R@dz _
[ A2
[ ve + BF |
F(z) " _R()
< / V()] de + (N)* s, V@F dz. (AL7)

Both integrals on the right-hand side exist because
of the conditions (1.3) of the potential and both
integrals vanish for large A. This fact is evident for
the second integral; for the first integral we have
to remark that z, tends to zero. It can be shown
that (AL.7) vanishes like |\|™* in the case of the
potentials which behave like z7%, « > 2 or like
exp (1/z) at the origin.

In the case of the solutions of the integral Eq.
(2.7), there is no complication at the origin since
these solutions are defined in the half-plane Re z > z,.
Then one needs to estimate the second and third
term in the brackets of (AI.1) and will conclude

9@ ~1+01/N), z&Ca, =).
APPENDIX II
Our intention here is to prove the asymptotic
form (2.19). The starting formula will be (2.17).
We shall show that the first term of the right-hand
side of (2.17) where g.(z) is replaced by 1 is the

leading term. We shall denote it by a(z). Using (2.8)
we can write it in the explicit form

1
o) = f ST — B \L T &P {’2
X [()xz/éz) — kz]* dg}) V() de’. (AILl)

Cx(2,3%)

We use the new variable z = (A/k)u. Then the

integral becomes

a[(ME)u] = 1+ u[(\/k)z)

e/ — 1)
X (exp {—(Ww/k)z} — exp {—(M/k)x

2k()\1/k)"‘ f

- [ L - 1p dy}) do
+ O[V..(2J]- (AIL.2)

Let us apply here Theorem 3 of Ref. 4. Although
this theorem holds for real A it can be easily gen-
eralized for complex A from the right half of the
A-plane. As each term of the function under the
sign of the integration in {AII.2) satisfies separately
the conditions of the theorem mentioned, we can
apply this theorem to integrals over the first and
over the second part of the integrand separately.
We shall obtain directly the asymptotic form in A.
Going back to the variable z we have

- V..(2)
a(z) - ”{I‘ + 2[()\2/22) — kz]g} [1 + 0'(2)]. (AII3)
Now we have the following estimate of the Eq. (2.17):

lg*(z)
<a | V@) - Dl
Cx(z,%)

s

+ ~/;'¢( ®) IW(Z')I lgt(z,) - go:t(z’) - a«(z,)l [dz’[.

— go:(2) — a(z)l

[W(@)a() dz'|
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We use the asymptotic forms (2.16) and the Titch-
marsh lemma (2.15), where now

o@ =(mm) [ e

and

C, = W(z) de|.
2 /;“p,w)l @) zl
Using Theorem 3 of Ref. 4 to the function C,(z),
we can find its asymptotic behavior: C,(z) =
(N2/I\) [V (@)] [1 + b(2)]. Hence,

[9:(2) — go:(2) — a(2)| < N3 |Va.(2|/|N. (AIL4)
As [a(2)| behaves like |V,,(2)| for large z, we conclude
that the right-hand side of (AIL.4) makes the error
of the order 1/|A] to the asymptotic behavior
(AIL.3) of the function a(z). Thus we proved the
assertion (2.19).

APPENDIX III

We have to show here the validity of the in-
equality

2 )
> poe — z) [ V@ dz.  (AITLY)

The part of the integral over C(z,, 2;) has a positive
real part as is shown in Appendix I in the estimates
of the exponential function in the Green’s function.
Hence, we must show the validity of (AIII.1) for
the integral over C(z, z,). (AIIL.1) will hold if

Re [V(z) + (\*/x") — £ > p[V()]

for z € (0,z). (AII1.2)
Let us denote the difference V(x) — k* by P(x).
If we prove the inequality (AIIL.2) for the function
P(z) on the right-hand side instead of the function
V() it will be satisfactory because % is fixed param-
eter and always holds [V(z) — K’} > ¢[V()].
Hence, let us denote B = P(z) 4+ Re \*/z® and
I = Im A\?/z°. We shall use

Re [P(x) + N*/2"]F = (1/2H[R + (B* + D)
We deduce from this formula
Re [P(x) + N/2*1 > [P(x)]t if ReM >0
and
Re [P(x) + N/2*]F > [P(x))/2
for Re X\ > —Im A

In the range where Im A*> < —Re )\’ i.e., where
3r < w < ix, we shall use the formula

[P@@) + N*/2"1t = (B® + I")? exp [i/2 arc cot (R/D)]
Here
R® + I’ = P(z) + 2P(x) |\]® cos 2w/2® + |A\|*/z*

is larger than P(z) sin® 2w and arc ctg (B/I) is less
than 2w. Hence, Re [P(z) + A/2*]' > sin 2w cos
w[V(z)]!. Thus, we are always able to find out the
constant p in the inequality (AIII.2). It is really 1,
1/2% or sin 2w cos w in the case 0 < w < im, ir <
w < $ror ir £ w < im, respectively.
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the Liquid—Vapor Transition*
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Rigorous upper and lower bounds are obtained for the thermodynamic free-energy density a(p, v)
of a classical system of particles with two-body interaction potential ¢(r) + ¥%(yr) where » is the
number of space dimensions and p the density, in terms of the free-energy density a®(p) for the
corresponding system with ¢(x) = 0. When ¢(x) belongs to a class of functions, which includes those
which are nonpositive and those whose y-dimensional Fourier transforms are nonnegative, the upper
and lower bounds coincide in the limit v — 0 and lim, .o a(p, v) is the maximal convex function of
p not exceeding a®(p) + 3ap?, where @ = [ ¢(x) dx. The corresponding equation of state is given by
Maxwell’s equal-area rule applied to the function p°(p) -+ 3ap? where p%(p) is the pressure for ¢(x) = 0.
If a%p) + %ap® is not convex the behavior of the limiting free energy indicates a first-order phase
transition. These results are easily generalized to lattice gases and thus apply also to Ising spin
systems.

The two-body distribution function is found, in the limit v — 0, to be normally identical with that
for ¢(x) =0, but if the system has a phase transition it has the form appropriate to a two-phase system.

Some of the upper and lower bounds on a(p, v) are simple enough to be useful for finite 4. Also,

JANUARY 1966

some of our results remain valid for quantum systems.

1. INTRODUCTION

HASE transitions such as melting and boiling

are familiar experiences, but their explanation
from the first principles of statistical mechanies still
presents a major challenge to the theoretical phys-
icist. One of the earliest steps towards a theory
of the gas-liquid phase transition was taken by
van der Waals.! Seeing the interaction between the
molecules of a classical fluid as a competition be-
tween two distinet parts of the intermolecular force,
a short-range repulsive part and a long-range attrac-
tive part, he arrived at the equation of state

P = kTp/(L — pb) + 3ap’ = puau(e, T)  (1.1)

where p is the pressure, & Boltzmann’s constant,
T the temperature, p the number density, and —a
and b are positive constants characterizing long-
and short-range parts of the potential, respectively.

When T exceeds the critical temperature 7, =
—4a/27bk, the van der Waals equation of state (1)
gives a good qualitative representation of the iso-
therms of a real fluid; for T < T,, however, each
isotherm includes a section where the compressibility
is negative, in violation of the thermodynamic
stability principle. The reason for this failure is
that the argument leading to (1) assumes a single-
phase system; it does not allow for the possibility
of coexisting liquid and vapor phases.

* Work supported by the U. 8. Air Force Office of Scien-
tific Research at Yeshiva University, Grant No. 508-64.

t Present address: Imperial College, London, S.W. 7,
England.

1J, van der Waals, thesis (Leiden, 1873) (cited by Kae,
Uhlenbeck, and Hemmer, Ref. 6 of this paper).

Maxwell® showed that the coexistence region could
be included in the theory by using van der Waals’
equation of state for both liquid and vapor phases
and using the thermodynamic equilibrium condition
that the two phases must have equal pressures and
chemical potentials. This leads to the following
modifieation of (1) for T < T,:

p = {pvdW(p) T) if p < p(T) or p > PZ(T)} (12)
psat(T) if Pv(T) <p< Pl(T)

where p,(T), p:(T) and p,..(T) may be determined
by the graphical construction shown in Fig. 1.

A very interesting derivation of van der Waals’
equation of state with Maxwell’s rule was given
recently by van Kampen.® In this derivation the
volume @ occupied by the system is divided into
a large number of cells, each small compared with
the range of the long-range attractive foree, but
large enough to contain many particles. Avoiding
the pitfall of assuming a uniform distribution of
particles over cells, which leads* to a generalized
form of the van der Waals equation of state, van
Kampen obtained the distribution over cells by
minimizing the free energy. His method leads to
the modified equation of state (2), which implies
a first-order phase transition. When p < p, or p; < p,
van Kampen’s method indeed gives a uniform dis-
tribution over cells, but when p, < p < p; it leads

2J. C. Maxwell, Scientific Papers (Dover Reprint, New
York), p. 425.

¢ N. G. van Kampen, Phys. Rev. 135, A362 (1964).

4 O. Ornstein, thesis (Leiden, 1908) (cited by N. G. van
Kampen, Ref. 3 of this paper).
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to the conclusion that this distribution is nonuni-
form, as it should be when two phases coexist.

Van Kampen’s treatment is, however, not math-
ematically rigorous. In particular the conditions to
be satisfied by the interaction are not specified, and
various limiting processes are hinted at but not
carried out explicitly. It is the purpose of the present
paper to provide a rigorous treatment similar to
van Kampen’s and to extend it to a more general
class of long-range potentials than the purely attrac-
tive potentials considered by van Kampen.

The intermolecular potential we consider has the
form proposed by Kac® and investigated thoroughly
for a one-dimensional system by Kae, Uhlenbeck,
and Hemmer,*

o(1) = q(r) + w(r, ), (1.3)

where r represents the separation of a pair of par-
ticles, q(r) is a short-range potential, and w(r, )
is a potential (we call it the Kac potential) whose
range is proportional to the reciprocal of the param-
eter v. Kac, Uhlenbeck, and Hemmer studied a one-
dimensional system with

o) = {+°° i r <, (1.4)
0 if r>r,
w(r, v) = Joy exp (—7), (1.5)

where 7y, v, and —a are positive parameters. For
finite ¥ they found no phase transition, but in the
van der Waals limit v — 0 the equation of state
approaches as a limit Maxwell’'s modification (2)
of the van der Waals equation of state and thus
does show .a first-order phase transition. Unfor-
tunately their method is very difficult to generalize
to other potentials or to more than one dimension.

An important feature of the work of Kae, Uhlen-
beck, and Hemmer was the use of the limit process
¥ — 0 to provide a clear distinction between the
short (finite) range of the contribution ¢(r) to »(r)
and the long (infinite as ¥ — 0) range of the con-
tribution w(r, v). It is this feature which we shall
exploit here; but unlike Kac, Uhlenbeck, and
Hemmer, we do not restrict the system to one
dimension nor the potential to the form defined by
(4) and (5). Instead of the special form (5) for
w(r, v), we use

w(r, v) = ve(), (1.6)

where v is the number of dimensions of the space

8 M. Kac, Phys. Fluids 2, 8 (1959).
8 M. Kae, G. E. Uhlenbeck, and P. Hemmer, J. Math.
Phys. 4, 216 (1963).

T<Te

P sat

£ £ r

Fie. 1. Typical isotherms for the van der Waals equation
of state (solid lines) and Maxwell’s modification (dotted line).
The shaded areas are equal.

considered; this reduces to (5) if » = 1 and ¢(x) =
Lae™". If the function ¢(x) is bounded in a neighbor-
hood of the origin, say in z < §, then the Kac
potential (6) has the property

o, ] <7 Max le@)]| if v <8 (1D

so that

lim w(r,y) = 0 forall r. (1.8)
70

At the same time the integral of the Kac potential
over all y-dimensional space,

f w(r,v) dr = fqa(x) dx = q,

is independent of «. This fact is compatible with
(1.8) because the limit operation vy — 0 does not
commute with the one associated with the infinite
region of integration,

The basis of our method is to obtain upper and
lower bounds on the free energy

AN, Q,v) = —kT log Z(N, , 7, (1.10)

where Z(N, Q, v) is the classical partition function
for N particles at temperature T = 1/k8 in a
v-dimensional cube €, defined by

Z(N, @, ) = (1/N)(mkT/2xh*)"""

(1.9

LAY -pV * e
X fﬂ fne dx, -+ dzy  (L11)
and
V = Z U(x; - x,-) (1.12)
$SisSN
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with v(r) defined in (3). The upper and lower bounds
are obtained by dividing the cube @ into M congruent
smaller cubes w; - -+ wy and using estimates of the
interactions across cell boundaries to relate the free
energy of the cube € to the sum of the free energies
of the cubes w, +++ wy.

From these upper and lower bounds, the equation
of state in the van der Waals limit is calculated
by means of a succession of limit operations. First
the thermodynamic free energy is calculated from
A(N, Q, v) by taking the thermodynamic limst. The
simplest way of taking this limit is to double the
side of the cube Q repeatedly, adjusting N at each
step to the value pQ where p, the density, is a con-
stant, and the symbol Q is used to represent the
volume of the cube as well as the cube itself. The
thermodynamic free-energy density, a function of
p and v, is then defined as

a(p, ’Y) = lnim A(PQ: Q, 'Y)/Q (113)
where A(N, @, v) may be defined for nonintegral
N by linear interpolation.”

The next operation is to take the van der Waals
limit ¥ — 0. This gives the van der Waals free-energy
density

a(p, 04) = linf)l alp, v)

= lim lim A(pQ, Q, 7)/Q.

¥-0 Qoo

(1.14)

It is important to take these two limits in the right
order. Taking the limit @ — o first, as in (14),
means that the range of the Kac potential, although
very large, is much less than the size of the container.
If they are taken in the opposite order, then the
Kac potential has a range much larger than the
size of the container and in consequence of (8) its
effect disappears. In fact, by applying (8) to (10)
and (11) we obtain

lim AN, Q,7) = A°(N, 9), (1.15)
¥—-0
where A° is the free energy for N particles of the
reference system in a cube Q. By reference system
we mean one for which the interaction potential is
g(r) instead of ¢(r) 4+ w(r, v). Taking the thermo-
dynamie limit of (15) we obtain, in constrast to (14),
the formula

lim lim A(PQ) Q, 'Y)/ﬂ = ao(P)

- y—0

(1.16)

where

7 M. Fisher, Arch. Rat. Mech. Anals. 17, 377 (1964).
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a’(p) = lnim A%(p2, Q)/0 (1.17)
is the thermodynamic free-energy density of the
reference system at particle density p, and is not
in general equal to a(p, 0-+).

The upper and lower bounds on A (N, Q, v) which
we shall derive lead to upper and lower bounds on
a(p, 0+). These bounds depend on the volume w
of the cells w; used. The bounds can be simplified
by a third limit process w — o, after which, in
favorable cases, the upper and lower bounds are
equal so that a(p, 0+) can be calculated. This triple
limit process corresponds to the following relation-
ships:

(1.18)

among the four characteristic lengths of our cal-
culation: the range of the short-range potential, the
size of the cells, the range of the Kac potential,
and the size of the container.

Once a(p, 0+) has been found, the equation of
state can be calculated by differentiation. The main
result of our work is to show rigorously that under
suitable conditions the equation of state is indeed
given by Maxwell’s rule (2) applied to the gen-
eralized van der Waals isotherm

Doaulp, T) = (o, T) + 3’ (1.19)

where p°(p, T') is the pressure of the reference sys-
tem, calculated by differentiation from a°(p). This
result can be used to investigate the conditions under
which the system will have a first-order phase transi-
tion in the van der Waals limit. A further result
is to show, by studying the two-particle distribution
function, that if there is such a first-order phase
transition then two phases of different densities are
present during the transition.

For rigorous arguments it is necessary to impose
conditions on the short- and long-range potentials.
We shall assume that the short-range potential
satisfies

ro Lo'” Ky 'K QY

gt) = + o for r <1y, (1.20a)
lo@)| < Dy~ (1.20b)

where r, (the hard-core diameter), D,, and ¢ are
positive constants; and we shall also assume that
the shape function ¢(x) of the Kac potential satisfies

for r, <7,

le(®)] < Dgr™™* for all -, (1.21a)
o(r) iscontinuousat » =0, (1.21b)
[ o(r) dr exists as a Riemann integral. (1.21¢)

Further, when in Sec. V the function o(r) is ex-
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pressed as the sum of two parts satisfying the condi-
tions (5.2), both parts are required to satisfy (1.21).
The extent to which the conditions (1.20) and (1.21)
can be weakened will be discussed in See. IX, along
with the possibilities for generalizing this work to
quantum systems and to lattice gases.

II. UPPER BOUND ON THE FREE ENERGY

Finding an upper bound on the free energy is
equivalent to finding a lower bound on the partition
function. To obtain a lower bound, we divide the
cube @ into M smaller cubical regions w, +-- wyr,
each of side (s + ¢) where s and ¢ are positive
lengths such that (s 4 ¢) is a submultiple of the
side of Q@ (see Fig. 2). Since the small cubes com-
pletely fill Q@ its volume, which we also call @, is
given by

Q= M@+ t). 2.1)

For each w;, let v} be the cube of side s consisting
of all points within w; whose distance from the
boundary of w; is at least 1. A lower bound on
Z(N, @, v) can be obtained by selecting any set
of integers N,, N, - Ny which add up to N,
and considering only the contribution to the integral
in (1.11) from configurations where there are N,
particles in the cell w{, N, in o}, and so on. The
quantity so caleulated we denote by Z(N,, N« - N ).
There are NI/(N,IN,! --- Nx!) ways of choosing
the N, particles to go in the cell w{, N, to go in
w}, ete., and since the particles are identical all these
different ways give the same contribution to the
integral. Multiplying a typical contribution by
NYII N.! we thus obtain

zZ Z Z(Nn N2 NM)
= H (/N D(m/2xh"8)™ "]

Xf [ e dx, - dxy, (2.2)

where the first N, of the N p-fold integrations are
taken over the region !, the next N, over }, and
50 on.

To obtain a lower bound on the integral in (2.2)
we write

V=v4+V" (2.3)

where V' is the contribution to the total potential
energy from pairs of particles that are both in the
same cell, and ¥’ is the contribution from pairs
that are in different cells. If V/.. is some upper
bound on ¥V, then (2) implies
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Fia. 2. Division of  into cells.

Z> H (/N )(m/2xh%8)""*"])

Xf f ¢ BTV mes Gy vk dxy
o' o'

= [JI ZW., o', )" ™, (2.4)
where Z(N;, o, v) is the partition function for N,
particles in a cube o', of side s.

To obtain a lower bound on the exponential factor
in (4) we consider the short- and long-range con-
tributions separately, writing

V! o= Q" + W, (2'5)

A convenient upper bound for W/, the long-range
contribution to V", is

W' < 3" NN o (k:;) (2.6)
i<i
where
wmax(kij) = lv‘e[a‘x w(x - Y) 'Y)
v€u;

T€wo

where w, is a cube of side (s + #) centered at the
origin, and k;; is the vector from the center of w,
to that of w;. For an upper bound on @", the short-
range contribution to V', we may use the same
method, in conjunction with the condition (1.20),
and obtain, if ¢ > r,, the upper bound

Q"< D, E Nt'Ni(ri:',min)_’—‘

<y

=3D, 2N 2 Ni(rijmin) ™' (28)
+ 7

where 7,; min 18 the least distance from i to o!

and )/ means a sum with the j = i term omitted.

To estimate this last sum we may group the cubes

w} into shells centered on w}. The first shell contains
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3" — 1 cubes, all points of which are a distance
at least ¢ from all points of w}, the next shell con-
tains 5° — 3” cubes, each one at least 2¢ + s from
w}; and so on. Writing also N,,, for the maximum
value of N;, we obtain

Q" <D TN, 3 Naul@n + 17

—@2n - Y/t + (0 — D)

< 3D,NNoJ 1™ (2.9)

where

J, = f:n""[@n +1y —@n—-1)'1< =. (2.10)
Substituting (9) and (6) into (5), (4), and (2), we
obtain

AN, Q, 7) < E A(Nh o’y )

+ E NiNiwmax(kii) + %D2J1NNmaxt-v—e; (2'11)

i<y
where A(N, @, ) is defined in (1.10). The upper
bound (11) holds for any choice of Ny, Ny, -++ Ny
whose sum is N, and in particular for the choice
which minimizes the right side.

To obtain an upper bound on the thermodynamic
free energy in the van der Waals limit, we apply
the triple limit process described in See. 1 to the
inequality (11). This is simplest for the case where
all of Ny, N, - -+ Ny are equal:

N1=Nz="'=NM=p(8+t)v. (2.12)

Replacing > <, in (2.11) by 4 >_; 3/ and dividing
both sides by € we obtain
A(pQ, Q,7)/Q < [M/Q)A(p(s + 8, &', %)
+ 3e's + 97/9) 220 2 Wan(ks)

+ 3D, J,0°(s + D)t

To take the limit @ — « we require the following
lemma:

:Li_'lg I/M z‘: ’Z' wmnx(kii) = ;’ wmax(k)

where > ¢ is an infinite sum over the complete
infinite lattice of possible vectors k,; except k = 0.
To prove (14) it is sufficient to show that the
difference between its two sides vanishes. This dif-
ference can be written as the limiting value, for
large M, of the expression

1/M 2 ;" Winax(Kiy)

(2.13)

(2.14)

(2.15)
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with D_/ meaning the sum over an infinite network
of cells outside ©, continuing the pattern established
by the cells inside @, but not including the cells
inside €. Let & be any small positive number. By
(1.6) and (1.21a), the infinite sum on the right of
(14) converges absolutely, and therefore we can find
a number ¢ such that

;’ [Wasx(B)| < 33.

|k|>e

(2.16)

The sum over 7 in (15) may be divided into two
parts, the first part including all those cells whose
distance from the boundary of @ is greater than o,
and the second, those for which it is not. For each
value of ¢ in the first part of the s-summation, the
sum over j covers only a subset of the values of &
covered in the sum (15), and hence this part of the
i-summation contributes at most 5 to the expression
(16). In the second part of the 7-summation, the
number of terms is at most [2 — (@"* — 2¢)’1/(s + 1),
and this number does not exceed 2vs Q" (s + )’
because

if z>y>0  (217)

Consequently, by (1), the second part of the 7-sum-
mation contributes to the expression (15) an amount
not exceeding 2vo Q7" Y |[Wnax(k)}, which can be
made < 14 by making Q large enough. Thus the
complete expression (15) is less than § for all large Q,
and since § is arbitrarily small, the result (14) follows
from the definition of a limit, Q.E.D.

Taking the thermodynamic limit of (13) with the
help of (1) and (14) we obtain

alp,v) < A(p(s + 0", ', 7)/(s + 1)
+ 30°(s + 8" Zk‘, Winex ()

+ 3D.J,0%s + 1)/ (2.18)

The second limiting process is the van der Waals
limit ¥ — 0. To evaluate the van der Waals limit
of the middle term on the right in (18) we substitute
from (7) and (1.6), obtaining

s+t Zk:’ Wae(k) = 277 337 A Max o(x)  (2.19)

xv — yr S va-l(x — y)

where the sum goes over all nonzero vectors n with
integer components. A, stands for the cube of side
2v(s + t) centered at the point v(s + #)n with its
sides parallel to those of @, and A = 2'v'(s + )’
is the volume of one of the cubes A,. The network
of overlapping cubes A, can be disentangled into
2" separate nonoverlapping networks, each of them
just filling »-dimensional space (except for one net-
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work where the cube centered on the origin is
missing). In the limit ¥ — 0 these networks become
infinitesimally fine and, by Riemann’s definition of
an integral,® the contribution of each of them to
the second sum in (19) tends to [ ¢(x) dx; the van der
Waals limit of (2.19) is therefore

(s + 0" lim ./ wou(k) = f o(x) dx = .  (2.20)

¥—0 k

Using this result, and also (1.15), in (18) we obtain
alp, 0+) < A’(p(s + &), &) /(s + 1) + 30’

+ iDuT0(s + O /0T. (221)

The final limiting process is to make the cell size
infinite by making s — . As Fisher has shown’
the last term in (21), which represents the short-
range interactions between cells, can be eliminated
if we make t depend on s in such a way that

t/s—0 and />0 as s— =, (2.22)

This can be done, for example, by making ¢ « §"
where 7 is a constant satisfying

/(v + e < g <1. (2.23)

Applying this limit on both sides of (21) and using
the continuity of a’(p), we obtain, since the volume
of the cell o’ is ¢,

a(p, 04+) < a’(p) + o' (2.24)

That is, in the van der Waals limit the increase in
free-energy density brought about by introducing a
Kac potential into a system with short-range forces
cannot exceed the increase that one would calculate
by treating the particles as a smoothed-out uniform
medium,

The result (2.24) can be strengthened in some
cases by using the fact’® that a(p, v) is a convex
funetion'® of p, so that a(p, 0+), being the limit
of a sequence of convex functions, is also convex.
Because of this (2.24) implies

a(p, 04+) < CE {a’(p) + }ap’}

where CE {f(p)} means, for any function f(p), the
conver envelope of that function, defined as the
maximal convex function not exceeding f:

(2.25)

8 W. Rogosinski, Volume and Integral (Oliver and Boyd,
London, 1952), Theorem 58.

¢ D. Ruelle, Helv. Phys. Acta 36, 183 (1963).

10 G, Hardy, J. E. Littlewood, and G. Polya, Inequalities
(lllambridge University Press, London and New York, 1959),

ap. 3.
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CE {f(p)} = Max ¢(s) for each value of p
o(-)
¢(+) is convex

¢(f) < f(¢) forall ¢

Since the maximum of any family of convex fune-
tions is'! itself convex, the function CE {f(p)} is
convex. If f(p) is convex, then CE {f(p)} and f(p)
coincide; otherwise the graph of CE {f(p)} consists
partly of convex segments of the graph of f(p) and
partly of segments of double tangents of this graph
(Fig. 3). The construction of CE {f(p)} from f(p)
is sometimes called the double tangent construction.

It will be shown in Sec. VI that the replacement
of a’(p) + lap’® by its convex envelope is equivalent
to the replacement of van der Waals’ equation of
state by Maxwell’s modification (1.2).

(2.26)

III. LOWER BOUNDS ON THE FREE ENERGY:
NONNEGATIVE-DEFINITE KAC POTENTIALS

A lower bound on the free energy is most easily
found when the shape function ¢(x) defining the
Kac potential (1.6) is nonnegative definite: that is
to say, when its »-dimensional Fourier transform

) = [ o®) ep CripR dx B

is nonnegative. In this case it is possible to find a
lower bound W.,;. on the long-range contribution

W= 2 velvx: — x,)]

i<i

=3 E 2 velv(xi — x)] — INYe(0)  (3.2)

fie)

fip)

23 { f(f)}

f
F1a. 3. A function f(p) and its convex envelope.

1 Proof: Since CE{f(p)} > ¢(p) both ends of any chord
of the graph CE{f(p)} Lie above or on the ends of the corre-
sponding (same end ordinates) chord of any ¢(p) and hence
above or on the graph of ¢(p) itself; consequently the chord
of CE{f(p)} also lies above or on the curve Max ¢(p) =
CE{f(p)}.
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to the total potential energy V, and by substituting
such a lower bound into the basic definitions (1.10)
and (1.11) we obtain

AN, Q,7) > AN, @) + Wain.  (33)

To find a suitable W;, we substitute the Fourier
inversion formula of (1) into (2), obtaining

W = —3Nv'6(0)

+ 3 [ dp 2(o)

ﬁ: exp (2ziyp-x;) ’ (3.4)

for almost all configurations x, -« - xy. The “excep-
tional” configurations for which formulas such as
(3.4) may fail will be ignored since they form a
set of zero measure and therefore do not affect the
configurational integral in (1.11). Let 6 be any
positive number. Since ®(p) is'* a continuous func-
tion of p, and ®(0) > 0, we can find a positive
number p, (depending on §) such that

&(p) = (1 — 8)2(0) (3.5)

whenever p is inside a cube of side 2p, centered at
the origin. Since ®{p) > 0 when p is outside this
cube, it follows from (4) that

W + iNY'¢(0) = 3(1 — )30y

dep

¥(p) f_.; exp (2riyp+x) (3.6)

where

¥(p) = "I_'I (1 = |pal/po) if |pa] < po for all n,

0 otherwise, 3.7

and p, - -+ p, are the components of the vector p.
Applying Parseval’s theorem to (6) we obtain

W + 3NvY'e(0) 2 (1 — 9)2(0)3r

X f d(‘YX){;V:; Pv(x — x,.)]}2 (3.8)

where

v@) = [ ¥() exp (~2rip-y) dp
(3.9)
= I'Is_m: 22(7"2?/1:20)
n=1 T YnPo

and y, --- y, are the components of the vector y.
A lower bound on the integral in (8) can be
obtained by confining the integration to a cube Q*
concentric with 2 and similarly oriented but having

12 This follows from the existence of [ |¢(x)| dx.

L. LEBOWITZ AND O. PENROSE

a side of length @'” + I where [ is an arbitrary
positive quantity. Applying the Schwartz inequality
to the resulting integral and writing &* for the volume
of the cube ©* we obtain

W+ IN76(0)
> 11— 930 3 [ 9lrx — x) derol/°

2
> 1 - 030N [_wwar|/e @10
u<y
since the integrand is nonnegative and every point
x inside the sphere |x — x,;| < [ is also within Q*.

Let us choose ! so that [ — « and /@' — 0
in the thermodynamic limit; for example, we may
take I « ©'*”. Then in this limit we have Q*/Q — 1
and [,<y: ¥(y) dy — 1, and the lower bound on
W/Q implied by (10) has the thermodynamic limit
—307"0(0) + 3(1 — 8)®(0),".

Since this result holds for arbitrarily small §, it
is also true in the limit 8 — 0; that is to say, there
exists a sequence of lower bounds on W, call them
W min, With the property*®

lim Wai/@ = —307"(0) + 33(0)6’

1o

(3.11)

—307’¢(0) + 3ap’
in the notation of (1.8).
This result enables us to take the thermodynamic
limit of (3), obtaining
a(p, v) = a’(p) ~ 3o7’¢(0) + }ap’

for nonnegative-definite potentials. In the van der
Waals limit this formula reduces to

(3.12)

a(p, 0+) > a’(p) + 3ap’ (3.13)
which when combined with (2.24) gives
a(p, 04) = a’(p) + 3ap’ (3.14)

for nonnegative-definite Kac potentials.

IV. LOWER BOUND ON THE FREE ENERGY:
NONPOSITIVE KAC POTENTIALS

Another case where a lower bound on the free
energy can be found fairly easily arises when the
Kac potential is nonpositive; that is when

o(x) <0 forall x. 4.1)

In this case it is again necessary to divide the cube
© into cubical cells w; -+ wy, each of side s + ¢

18 A proof of (3.11) for systems with periodic boundary
conditions was given by E. Lieb, Phys. Rev. 130, 2518 (1963).

We are indebted to E. Newman and M. Austin for advice on
the proof presented here.
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(see Fig. 2). The definition (1.11) of the partition
function may be written

Z(N, @,7) = . ZNM Z(Ny, +-+ Ny  (4.2)
where the sum is over all sets of M nonnegative
integers adding up to N and Z(N,, « -+ , N)) means
the contribution to (1.11) from configurations with
exactly N; particles in cell w;(7 = 1,2 --- M). Since
there are (N + M — 1)I/N!(M — 1)! terms in the
sum it has the upper bound

Z\N, 2,v) < (W + M- DYNI(M - D]
X Max Z(Ny, +++, Nu),

Nye»

(4.3)

the maximum being taken over all sets of non-
negative integers N, --- N, which add up to N.
The combinatorial argument which led to (2.2) gives,
when applied to Z(N,, +++ , Ny), the formula

ZNy, +o+ y Nu) = TTTA/ND(m/20076)™ 7]

Xf ...f e_ﬁvdxl...

where the first N, of the N integrations are over
the cell w,;, [not ! as in (2.2)] the next N, over w,,
and so on.

To obtain an upper bound on the integral in (4)
we separate the potential energy V into three parts:

V=@ +@g+W (4.5)

where Q' is the contribution to V from short-range
interactions between particles that are in the same
cell, § the contribution from short-range interactions
between particles that are in different cells, and
W is the total contribution from long-range inter-
actions. If Q.;. and Wai, are lower bounds on 4]
and W, then (4) and (5) lead to the inequality,
analogous to (2.4),

Z(le w0, Ny) < {I{IZ%N,-,(»)}

dxy (4.4)

X exp [~ (Quin + Wai)/kT]  (4.6)

where Z°(N,;, w) is the partition function for N,
particles of the reference system in a cube of side
s+t

To find a suitable lower bound on @, we split
it into two parts:

a=q +qQ 4.7

where Q" is, as in (2.5), the contribution to § from
pairs of particles whose centers are both within the
inner cells of side s denoted by w? (t = 1,2 -+ M)
in Sec. 2, and @ is the contribution of pairs of

particles, at least one of which is in the “corridor”
consisting of points that are not in any of the !
(see Fig. 2). The argument used to prove (2.9) proves
at the same time that

Q” 2 _%D2NNm&vat_,-e- (4-8)
The contribution @'’ has the lower bound
Q”, Z _Noorrél (4‘9)

where — @’ is a lower bound on the interaction of
a given particle with all its neighbors, whose exist-
ence is a consequence'* of (1.20), and N,,,, is the
number of particles in the corridor. It can be shown'®
that the number of particles in a given region,
multiplied by the reciprocal close-packing density
p5}, does not exceed the volume occupied by all
points whose distance from the region is at most r,.
Hence, N... and N, have (provided s > 2r,)
the upper bounds

Nuaxps' < (s + 2r0)

Noowepi! (@7 4+ 2r) — M(s — 2r)
= M{(s + t + 2r, M) — (s — 2ro)"}
< wM(s + ¢ + 2 MY

X [t 4+ 2n(1 + M7V7)]

by (2.1) and (2.17).
Substituting (10) and (11) into (7), (8), and (9),
we obtain

(4.10)

(4.11)

G > Quin) 4.12)
where
Quin = —1D.Nopy(s + 2r)"J, 17"
— pM(s + t + 2 MY
X [t + 2n(1 + M™%, (4.13)

The details of this formula are unimportant; all
that is important is its behavior under the triple
limiting process described in the introduction. This
behavior is

lim lim lim @i/ )

g—® Y0 Q-

= lim lim {—3D,pp.(s + 2ro)’J,t7""°

o 40
— s + )7 + 2r) @’}
=0
by (2.1) and (2.22).

1 (. Penrose, J. Math. Phys. 4, 1312 (1963).
15 Q. Penrose, Phys. Letters 11, 224 (1964).

(4.14)
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A simple lower bound on W, the total long-range
interaction, is given by

W >3 E Z NN jWaia(k,;) (4.15)
where
wmin(kii)
= Minw(x —y, v) = Min wk,; + 2r,v). (4.16)
X€wg I€we
¥€uyg

the y-dependence of w.;.(k) not being explicitly
shown. These formulas are analogous to (2.6) and
(2.7) but the 7 = 4§ terms are now included. Since
N:N; £ §N? + 3N}, and wain(ks;) < 0 by (1),
we may deduce from (4.15) the inequality

w 2 _% Z Z (%Nf + %N?) lwmin(kii)l
= —3 Z N? Z [mia(l:s) |-
B i

The sum over j may be extended, without destroying
the validity of (17), to include the infinite network
of cells continuing outside Q the pattern established
inside it by the cells w, - -+ wy. In the notation of
(2.14) the resulting inequality is W > W, with

Wmin = % Z N? ; wmin(k)-

Substituting this into (6) and using (3) and (1.10),
we obtain

AN, Q) 2 kT log[N! (M — DY/ (N + M — D]

4.17)

(4.18)

M
+ Min Y {A°(N,, )
N

1vo* NM i=1

+ %Nf ; wmin(k)} + Qmin- (4-19)
The second term on the right can be simplified by
means of a simple property of the convex envelope
of a function, defined in (2.27). This property is

M™ 3 f(N) > M X CE {f(N)}

im] i

> CE {f(M* 5; N)}

(4.20)

where the first inequality follows from the fact that
CE {f} is a lower bound on §, and the second from
the fact that CE {f} is convex.

Using (4.20) in (4.19) we obtain

AN, Q,7) > kT log [N! (M — DY(N + M — )]
+ M CE {A"N/M, «)

+ N/ M) Zk‘, Wain®)} + Gin (4.21)

J. L. LEBOWITZ AND O. PENROSE

where CE { } is the convex envelope of the quantity
in braces regarded as a function of N/M.

To apply the triple limiting process described in
Sec I we first divide (4.21) by £ and take the thermo-
dynamie limit @ — o, using Stirling’s approximation
for the factorials. In the notation of (1.13) the result
is

a(p, v) = —kT{(s + &)~ log [1 + p(s + #)’]
+ plog {1+ p7'(s + )71}
+ CE {(s 4+ 7 Ap(s + 1), w)

+ 1% + 8) D Warn(k)} + ng Omin/ Q. (4.22)

since
N/M = pQ/M = p(s + ).
In order to carry through the other two limit

processes we require the following lemma;:

Let f.(¢) be a sequence of functions converging
uniformly on an interval to f(¥) as n — o ; then
we have

lim CE {1.(8)} = CE {{(®)}.

n—w

(4.23)

Proof: Given any & > 0 there exists an 9T such
that for n > 9%, [f.(8) — f(&)| < & for all £ in the
interval. We then have from the definition (2.26)
of the convex envelope

CE {f.(®)} =2 CE {f(®)} — ¢
for all £ in the interval and n > 9t

since CE {f({)} — & is a convex function which
is < f,(¢). Similarly

CE {{(®)} = CE {f.(®)} — &

for all ¢ in the interval and n > 9.
Hence
ICE {fs(&)} — CE {{®)}| < &

for all ¢ in the interval and n > 9
which, since § is arbitrary, proves the lemma. Q.E.D.

In our case we consider an interval, 0 < p < p, < p,
where p, is any density less than the close packing
density p.. Taking the limit v — 0 of (22) we obtain

a(p, 0 +) > —kT{(s + )™ log [1 + p(s + 8)]
+ plog [l + p7'(s + )7}
1 CE {(s + 07" A°Lo(s + £, o]

+ 3o’} + lim Quin/Q (4.24)
Qe
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since, by an argument like that which led to (2.20),

(s + " Tim 2 i) = [ o) dx = @
¥—0 k
and the convergence is uniform because the differ-
ence between the sum and the integral is independent
of p. Finally, taking the limit s — <, where the
convergence is again uniform (Sec. 7k of Ref. 7),
and using (14), we obtain

a(p, 0+) > CE {a’(p) + 3ep’}.  (4.25)
Combined with (2.25) this gives
a(p, 04+) = CE {a’(p) + 3ap’}  (4.26)

for nonpositive Kac potentials. The result obtained
by Kae, Uhlenbeck, and Hemmer® is an example
of (4.26).

V. LOWER BOUND TO THE FREE ENERGY:
MORE GENERAL KAC POTENTIALS

When the Kac potential is neither nonnegative-
definite nor nonpositive, a lower bound can still
be obtained, though the method is more complicated
than before. We express ®(p), the »-dimensional
Fourier transform of ¢(x) defined in (3.1) as the
sum of two parts

®(p) = o.(p) + @-(p)

8o chosen that

(5.1)

&,(p) >0 forall p,

®_(0) = Min ®_(p) = min &(p) = Pnin,
] » (5.2)

fcm(p) dp < =,

&.(p) is continuous. J

The inverse transforms of ®,(p) and $_(p) will be
denoted by ¢.(x) and ¢_(x) and we shall require
also that ¢, (x) and ¢_(x) satisfy (1.21). These con-
ditions can be satisfied (provided d®/dp, > — =
at p = 0) by taking

&.(p) = { [2(0) — ®nil(1 —p/p)" i p < p’
0 if p>9p

(5.3)

where p’ is the smallest value of p at which ®(p)
attains its minimum value &,;, and » 1s a positive
integer (> 2) chosen sufficiently large to make
(1 — p/p")" < [8(P) — Puinl/[B(0) — Puial, for
p < p’. When &, (p) is given by (3) ¢.(x) can be
computed explicitly and shown to satisfy (1.21), and
hence so will ¢_(z). [Even when d®/dp = — o at
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p = 0 there is every reason to believe that the
division of ® into &, and ®_ can be made in a
way to satisfy all our conditions, provided ¢(x)
satisfies (1.21).]

Since ¢, (x) is a nonnegative-definite function its
contribution to W, which may be written W, can
be estimated by the method used in Sec. III. In
analogy with (3.11), the result has the form W, >
W . min Where

Hm W min/ @ = —307°0.(0) + 32.(0)0".

Qo

(5.4)

The other contribution W_ has a lower bound
analogous to (4.15)

W_> 41 Z Z NN w_ min(k;;) (5.5)

where as in (4.16) k; is the position vector from
the center of the cell w,; to that of w;, and

W_ min(k:;) = Minw_(x — y, )

xX€Ewi

yeai (5.6)
= NIiIl w_(k",' + 2!’, '}’),
r€uwo
where w_(x, ) = 7’¢_(vx) and w, is a cube of

side s + ¢ centered at the origin.

The quadratic form in (5) can be diagonalized
using a Fourier transformation. We define the func-
tion

W(p) = ; W- min(K) exp (2rip-k)  (5.7)
where the sum goes over all the different values
taken by the vector k;; as both ¢ and j range over
the values 1, 2, - -+ M. These values lie on a simple
cubic lattice of spacing s + ¢ with a lattice point
at the origin and are inside (not on the surface of)
a cube of volume 2°Q centered at the origin. The
sum in (7) therefore covers just [22" (s +£)™' — 1] =
[2M"” — 1)’ = M’ lattice points. The function W(p)
is periodic in p, the unit cell of the periodicity being
a cube of side (s + ¢)~'. Although the notation
does not show it, W(p) depends on s + ¢, v, and
Q as well as on p.
The inverse of (7) is

W_ i) = (M")™ 22 W(p) exp (—2wip-k)  (5.8)
P

where the sum goes over M’ values of p lying inside

a cube of side (s + #)™' and on a lattice of spacing

MY (s + )7 = [22" — (s + ¢)7".] Substituting

(8) into (5) and rearranging, we obtain

W- > ¥M)™ Zp: W(p) In(®)]® (5.9)
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where

n(p) = 2_; N exp (2rip-k) (5.10)

and k; is the position vector of the center of w,.
For a lower bound on the sum (9) we may replace
W(p) by its minimum value, obtaining

W_ > M) Ep: n@)|* Min W (p)

) .11)
- % 3. N! Min 7).

Substituting this result into (4.6) and using (4.3)
and (1.10) we obtain

AN, @,v) 2 kT log [NV (M — DY/IN+ M — 1]

+ Min 3 {A°(N,, @)

NyvosNM =1

+ %Ng, Min W(P)} “‘E" W«k,min + Gmin (5'12}
»
where W, .. satisfies (4).

The inequality (12) is very similar to (4.19) and
the effect on it of the triple limit process can be
studied by the method used for (4.19). The result,
analogous to (4.25), is

a(p, 0+) 2 CE {a’(p) + 3a-p’} + }a.p’,  (5.13)
where
a, = (2/p") lim lim lim W, ../ Q
o r0 e 5.14)
= & (0)
by (4), and
e = lim lim lim (s + ©)" Min W{p). (5.15)
FE s R ) r

The first step is to carry out the limit process 2 — o
in (15). It follows from the definition (7) that

W) — lim Wp)| < 2 - mia(®)]

where the sum is over all lattice points k outside
a cube of volume just less than 2'Q centered at the
origin. This sum is independent of p, and because
of (1.21) it tends to zero as @ — «. Therefore W{p)
approaches its limit, as € — o« uniformly in p,
8o that

(5.16)

lim Min W(p) = Min lim W(p)
e p »

Q=

“1\{5112(1’,7)

(5.17

where
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2@ = 2 w0 k) exp (2ripk),  (5.18)
the sum going over an infinite lattice with spacing
s+t

To study the effect of the next limit process,
vy — 0, we consider separately the cases where p
iz inside and outside a cube T of side 2p, centered
at the origin. The dependence of p, on v will be
chosen so0 that in the limit 4 —» 0 the sum (18)
may be replaced by an integral if p € T and by
zero otherwise.

By writing vq for p and x for vk in (18), and using
an argument similar to that which gave (2.20), we
find that

(s 4ty }{l_g} 2 (va, )

]

[ o exp (2rig-x) dx

= o_(q.

In order to use this result in (15), we must show
also that the convergence to the limit is uniform
provided vq &€ TI'. To do this we use the definitions
(3.1), (1.6), (18), and (6), to obtain the estimate

/M) — (s + 8" 22 (0, VI

(5.19)

;[ ezrip'k e?wiﬂ‘?w‘(k + y’ ,Y)
we

— Min w-(k + 2z, )] dyi

z€we

<[ e = 1 loute 4y, )
+ lw-(k +y,7) — Min w_(k + 2z,7)[} dy

< mpols + B f [w_(x, v)| dx

+ | o dx =+ 0 Do 620

Since we have required that [ lp.(¥)| dy < o,
the first part of the last member of (20) tends to
zero with v provided that

lim po = 0. (5.21)

0
The second part also tends to zero with v, as in
the argument leading to (2.20), because of the
Riemann integrability of ¢.. Since both parts are
independent of p, the convergence to the limit in
(19) is indeed uniform for yq € T, and it follows that
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(s + 1ty 115112119 2 ®y) =
= Min &_(q) =

Tim Min &_(p/+)
¥-+0 pPET

$_(0)
(5.22)

by (2), provided lim,., po/y = «.

To complete the estimates of Min 3 (p, v) for
(18) we must also find a lower bound for Z (p, v)
with p outside I'. Whenever p is outside T, we can
find a direction parallel to an edge of the cube T
such that the component of p along this direction
exceeds p,. If 1 denotes a vector of length s + ¢
along this direction we therefore have

Pofs+ 8 <p1<} (5.23)

the second inequality being a consequence of the
fact [see (8)] that all the allowed values of p lie
inside a cube of side (s 4+ )7 centered at the
origin. On multiplying both sides of (18) by 1 —
exp (2#ip-1) and taking absolute values, we obtain,
since Jl] = s + ¢,

2sin (=p-1) | 22 ()]
= !; [0~ min(K) — W min(le — D] exp (2rip-k)|

S E lw—.miu(k) - w—.min(k - l)l

Z Max w_(k + 4x, 7)

XEwgy

- Z Min w-(k + 4x, 7)

xCwe

(624

where w, denotes, as in (6), a cube of side (s + ¢)
centered at the origin. Applying once more an
argument of the type which led to (2.20), we find
that both sums in the last member of (24) tend to
the same integral in the limit v — 0. Thus (24)
can be written in the form

12201 < %lese(@p-D] 3(y)  (5.25)

where & does not depend and on p and tends to 0 with
. Combining (23) and (25) we obtain

|2° @, )| £ 8(v)/4ps(s + 1) for p outside T (5.26)

since sin ¢ 2> 2a/7 for 0 < z < /2. Let us now
choose p, in such a way that

lim 8¢)/po = . (527

?'ﬂ

This is compatible with the previous requirements

(5.21) and lim po/y = o ; for example, the choice
« [y + 6(y)]? satisfies all three requirements.

Combining (27) and (26) we obtain

2 (7 =0. (5.28)

lim Min
=0 poutside T
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Combining (15) and (17) and then using (22) and
(28), we obtain

= lim lim (s + &)’ Mm 2@

a— ¥yl

= lim ®_(0)

(5.29)
= @..(0) == @m;n.

This completes the evaluation of a..
Our main results (2.25) and (13) can be sum-
marized in the formula

E {a’(p) + 3a-p’} + 3a.p° < a(p, 0+)
< CE {a’(p) + 3ap’}.  (5.30)

From (30) we can find a(p, 0-+) exactly provided
the upper and lower bounds coincide. This can
happen in two ways:

(i) Where a’(p) + }a
envelope, (e.g., if a_ =
does so too since a =
implies
a(p, 0+) = CE {a’(p) + Jap’} = a’(p) + }ap’

if a%p) + 3a_p’ = CE {a’(p) + }a-p’}. (5.3D)
In the special case a_ = 0 this reduces to (3.14).

(ii) If @, = O then we have @ = a_ so that (30)
reduces to
a(p, 04) = CE {a’(p) + %ap’} if a. =0. (5.32)

The result (4.26) is a special ease of this, since (4.1)
implies ®(0) < ®(p) for all p.

_p° coincides with 1ts convex
0) the function a’p + 3ap’
+ + a. > a_; thus (30)

VI. EQUATION OF STATE

For a system with finite v, the thermodynamic
pressure p(p, v) is given”*® by

—a(p”'alp, v))/3(p™")
= p da(p, v)/3p — ale,v), (6.1)

the differentiation being at constant v and also at
constant 7', although the dependence on 7 is not
explicit in the notation. Since a(p, ¥) is”"® a convex
function of p at constant v the derivative on the
right of (1) exists'® except on a countable set of
values of p; it seems likely that this countable set
is in fact empty but no proof is known.

Taking the limit v — 0 on both sides of (6.1)
we obtain

p(p, 04) = p l;lir; dalp, v)/3p — alp, 0+).

plp,7) =

6.2)

To evaluate the right side of (2) we must show
that the order of the operations v — 0 and 8/dp

10 Ref. 10, p. 94.
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can be reversed. To this end we use the inequality'’
for the right~ and left-hand derivatives of a convex
function

fa(p — €, ) — a(p)}/(—€) < D_a(p, v)
< D.alp, )
< lale + ¢ v) — alp)l/e

(6.3

where
D.a(p, v) = 1}_{? lalp £ ¢, v) — alp, V)/(£e), (6.4)

with e an arbitrary positive number.
Taking the limit v+ — 0 on both sides of (3),
followed by the limit ¢ — 0, we obtain

D_a(p, 0+) < lim D_a(p, v)
10 6.5)
< lim D,a(p, v) < D.a(p, 0+).
¥—0

Hence if a(p, 0-+) is differentiable all four of these
expressions are equal, so that lim,_, D a(p, v) exists
and is equal to da(p, 0+4)/dp. Substituting this
result into (2) we obtain

p(p, 0+) = (pd/dp — Da(p, 0+) (6.6)

at all points where a(p, 0+) is differentiable. Equa-
tion (6) can be interpreted geometrically by the
statement that —p{p, 0-+) is the place where the
tangent at p to the graph of a{p, 0+) intercepts the
a-axis.

Combining (6) with (5.31) or (5.32), we obtain

2(p, 0+) = (od/dp — 1) CE {a"(p) + }ep’} (6.7)

for all Kac potentials to which (5.31) or (5.32)
applies, including nonnegative definite and non-
positive potentials.

If the graph of a(p, 0+) = CE {a’(p) + Lap’}
has a straight segment (see Fig. 3) then the geo-
metrical interpretation of (6) shows that p(p, 0+)
is constant along this straight segment; and the
chemical potential [a(p, 0+) + plp, 04)]/p =
da{p, 0-+)/dp is also constant. This behavior of the
thermodynamic functions characterizes a first-order
phase transition.

Since the straight portion of the graph CE {a°(p) +
$ap’} touches the graph a’(p) + %ap® at both ends,
the quantity

Doaul(p) = (pd/dp — 1)(a%(p) + 3ap”)  (6.8)

takes the same value, call it p,.., at the two ends
of the phase transition region. Moreover, if p; and

. Y7 Obtained by making & — 0 in Eq. (3.18.3) of Hardy,
Littlewood and Polya (Ref. 10).
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g, are the abscissas of the two points of contact,
then we have

fp " Bt = P A7)

= {—[a’(p) + 3ap’ + puaclo ' }i!
= {(d/dp)[a’(p) + 3ap’}:.

using (8) first as a definition of P,:.(p) and then
to evaluate 7,,,. Since the slopes of the graph
a’(p) + 3ap® at the two points of contact are equal,
the expression (9) vanishes. This shows that p; and
p, are related to P,..(p) by Maxwell’s equal-area
construction (Fig. 1). The replacement of a’(p) +
1ap® by its convex envelope is precisely equivalent
to making Maxwell’s modifieation (1.2) in the func-
tion #,4s(p) defined by (8).

For values of p where the upper and lower bounds
of a{p, 0+), in (5.30) do not coincide we still obtain
bounds on lim, ., da{p, v)/8p and hence on plp, 04}
by an argument due to Fisher'®: owing to the con-
vexity of the graph of a(p, 0+) its slope at p = p,
must lie between the slopes of tangents to its upper
bound crossing its lower bound at p = p,.

A result similar to that obtained for the pressure
holds also for the internal energy density

u(B, p,v) = (8/3B)[Ba(B, p, v)].  (6.10)

Bince —pBa(B, p, v) is convex in 8 we obtain, as in
the derivation of (6),

’M(ﬁ, P 0+) = a/aﬁ[ﬁa(ﬁ; p, 04+)]. (6~11)

Unfortunately we have been unable to prove any
similar general statements about the specific heat
and compressibility which correspond to second
derivatives of the free-energy density. At sufficiently
low densities, however, one can show that all the
density derivatives of p(p, v) approach the cor-
responding derivatives of p(p, 0+) by using Vitali’s
theorem together with the results of Lebowitz and
Penrose for the convergence of virial expansions.

(6.9)

VII. THE PAIR DISTRIBUTION FUNCTION

In order to understand better the effect of the
Kac potential on possible phase transitions in the
reference system and in the van der Waals system,
it is useful to study the two-body distribution func-
tion. (In this section we do not aim at such a high
standard of rigor as in the earlier sections.)

18 M. E. Fisher, “Bounds for the Derivatives of the Free
Energy and the Pressure of a Hard Core System near Close

Packing” {(to be published).
1 J, L. Lebowitz and O. Penrose, J. Math., Phys. 5, 841

(1964).
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Instead of the usual two-body distribution func-
tion®® n,(x,, X,), we shall study its space average

() = Q7 fnz(x, x + 1) dx. (7.1)

This distribution function when the system has N

particles in a box Q@ and a Kac parameter v will

be denoted by 7.(r; N, @, v). This function can be
determined from the formula®

3 [N, 0, Mg dr

= (a/arl)ﬂ_lA[N) 2,7, ﬂQ'(f)]u-o (72)

which holds for arbitrary bounded functions ¢'(r).
The integration may be taken over all space, since
A(t; N, @, v) = 0 for large r. The symbol A[N, &,
v, n¢'(r)] denotes the free energy analogous to
(1.10) when the short-range interaction potential
is not ¢(r) but ¢(r) + 7¢'(r), and 7 is a parameter.
Taking the thermodynamic limit and then the van
der Waals limit in (2) we obtain, provided all the
relevant limits and the derivative exist,

3 [ s 0, 00)0') dr

= (8/am)alp, 0+, 7¢'D)]s=0  (7.3)

where

7ia(r; p, 0+) = lim lim 74,(x; 0@, Q,7)  (7.4)
i

=0 Q-

and

a[p) 0+, nq’(r)]
= lim lim A[oQ, @, 7, 7¢'(")]/Q.

y-0 Q-®

(7.5)

The permutation of the limit operations v — 0 and
@ — o with integration and differentiation in
deriving (3) is justified on the left by Lebesgue’s
theorem.”® On the right it is justified [as in the
argument based on (6.3) and (6.5)], by the convexity
of A[N, , ¥, n¢’(t)] as a function of ». This convexity
can be verified by calculating the second derivative
of A with respect to 5. In a similar way we can obtain

3 [ #85 D@ dr = G/ondlp, /@l (T6)

20 T, L, Hill, Statistical Mechanics (McGraw-Hill Book
Company, Inc., New York, 1956), Sec. 29.

2 Equation (7.2) is the classical analog of a_ quantum
formula given by Bogolyubov and Zubarev, Zh. Eskperim.
i Teor. Fiz. 28, 129 (1955) [English transl.: Soviet Phys.—
JETP 1, 83 (1955)]. This was first used in this type of work by
M. E. Fisher. .

2 F, Riesz and B. Sz.-Nagy, Functional Analysis (Frederick
Ungar Publishing Company, New York, 1955), p. 37.
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where the superscript zero denotes quantities be-
longing to the reference system with a modified
short-range potential g(r) 4 4¢'(r). When the condi-
tions of validity for our main result (5.31) or (5.32)
are satisfied, (3) reduces to

3 [ ntes 0, 000/ dr

= (3/97) CE {a’[p, n¢'(D)] + }ap'}so.  (7.7)

Two cases may be distinguished. In the first of
these the graph of a’[p, #¢’(r)] + 3ap’ coincides
with that of its convex envelope and so (7) combines
with (6) to give

3 [ s 0, 000@ dr = 3 [ 8, de@dr (78)
which implies
io(r; p, 0+) = ﬁg(l‘, P (7.9)

since ¢’(r) is arbitrary. In this case, therefore, the
Kac potential does not affect the distribution of
pairs of particles, as one might expect from (1.8).

In the alternative case, where the graph of
a’lp, 7q'(r)] + iap’ does not coincide with that
of its convex envelope, the latter is a straight line
touching the former at two places, say p, and p,.
Both p, and p, depend, in general, on 5. The equation
of this straight line may be written

CE {a’[p, n¢'(®)] + 327’} = [p — p))a:

+ (p2 — Pad(p: — p) (0 < p < pa)  (7.10)
where
a = [, 1¢'@)] + 3 (R =1,2).  (7.11)

On substituting this into (7) and using (9), which
applies when p = p, or p = p;, we obtain

y [ e 000 @ ar = 3 [ |22

P2 — P

BL73(r; pa)

+ o po}q'(r) & (7.12)
since
9 [(p — pas: + (ps — p)ax]
9p P2 — P

== |, _ — -2
" (o= p)’ l:a1 o+ (= p1) 5 0 a’]

= 0, (7.13)

by virtue of the double tangent construction.
[In Eq. (13) we are treating 7, p,, ps, p as independent

ete.
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variables.] Since ¢’(r) is arbitrary, it follows from
(12) that

— b ﬁg(r; Pz)
P1

7ilr; p, 04) = 2=
P2

+ b2 : p’: ﬁ‘z)(r; P2), (pr < p < p3). (7.14)

P2

This equation can be interpreted®® to mean that
two phases coexist whenever CE {a’(p) + $ap’} <
a’(p) + 3ap’; their pair distribution functions are
7g(r; pi) and 7i3(r; p.), and their densities p, and
ps, respectively. This is consistent with the inter-
pretation of a straight portion of the graph a(p, 04)
as a first-order transition.

In interpreting the results (9) and (14) it should
be remembered that their derivation involves the
limit process vy — 0; they therefore yield information
only about values of r small compared with the
range v~ ' of the Kac potential. For example, (14)
implies a two-phase structure on a length scale
<« 7! but not necessarily on a scale > y7*.

Vil. SIMPLE UPPER BOUND ON «a(p, 7v)

Of the various upper and lower bounds on a(p, v)
obtained in Sec. II to V, the only one simple enough
to be useful for finite values of v is the lower bound
(3.12) for nonnegative-definite Kac potentials. The
other bounds are too unwieldy because they involve
the network of cells w, » - wy.

A simple upper bound on a(p, ¥) can be obtained
by a method due in essence to Gibbs.* We rewrite
(1.11) in the form

Z(\N, Q,v) = ZO(N: ﬂ)<e—ﬁw>o

where W is the long-range contribution to the
potential energy and ( )° indicates a canonical av-
erage over the reference system. Since ¢™*¥ is convex
we have by (1.6) and (7.1)

€7 > exp (—BW)
= exp [—%B f f v'o(vM(x, X +1) dx dr]-
(8.2)

Combining (1) and (2) and then taking the thermo-
dynamic limit, we obtain

(8.1)

alp,v) < @) + ¥ [ ol N dr (83)

% J, E. Mayer, J. Chem. Phys. 15, 187 (1947); G. E.
Uhlenbeck, P. Hemmer, and M. Kac, J. Math. Phys. 4, 229

(1963&%
n M. Girardeau, J. Chem. Phys. 40, 899 (1964).
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where 7i; is defined as in Sec. VII. This inequality
may be strengthened in the manner used in going
from (2.24) to (2.25), to give

a(p,v) < CE {a"(p) + f o(vD)fia(r; p) dr}' (84)

A system for which the right side of (8.4) can
be evaluated is the one-dimensional system con-
sidered by Kaec, Uhlenbeck, and Hemmer.® In our
notation it is defined by (1.4) and (1.5). For this
system, the last term in (8.3) is essentially the
Laplace transform of 73, and (8.4) becomes

a(p, 7) < CE {a(p)

+ Japv[(1 + v — yro)e™™ — 1177} (8.5)
with
a’(p)

= pkT{log [p(1 — pro) "(2xh’/mkT)*] — 1}. (8.6)

In the van der Waals limit (5) reduces to (2.25).

The argument which led to (4) also applies to
lattice gases. For example, if the short-range po-
tential is taken as

Q(r)={+°° if r=0,
0 if r0,

the part of the interaction potential which prevents
more than one particle occupying any site, then
7o(t; p) vanishes for r = 0 and takes the value
p® for r % 0; consequently the lattice-gas analog
of (4) leads to

8.7

alp,7) < CE {a’(p) + 30" 2  w(r,7)}  (8.8)
with
a’(p) =kTlplnp+ (1 —p)In(l - p]. (8.9

The sum )’ goes over the infinite lattice excluding
r=20.

IX. DISCUSSION

We have shown that for a class of Kac potentials,
including nonnegative-definite and nonpositive po-
tentials, the thermodynamic free-energy density is
given in the van der Waals limit by

a(p, 04+) = CE {d"(p) + }as’} 9.1)

and the equation of state by Maxwell’s modification
of the corresponding van der Waals equation of
state. If @ < 0, the graph of a(p, 0+) may have
straight portions; these correspond to first-order
phase transitions both in the thermodynamic prop-
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erties and in the behavior of the pair distribution
function for r < ¥7'. If @ > 0 on the other hand,
the graph of a(p, 0+) cannot have a straight portion
and thermodynamically the system can have no
phase transition. A paradoxical situation arises if
the reference system has a phase transition and
a > 0; then by (7.9) the pair distribution function
has the form characterizing a phase transition, yet
there is no phase transition in the thermodynamic
sense. The explanation is that the result (7.9), which
indicates the coexistence of two phases, was ob-
tained using the limit process y — 0 and may
therefore be relied on only when r << v~'. On the
other hand, the term lap® in a(p, 0+) indicates that
on the length scale where the Kae potential operates
(distances &~ or >> v7') the system is uniform since
there is no transition. It appears therefore, that
the repulsive Kac potential causes the distinct liquid
and gas phases of a normal first-order transition
to break into droplets or froth whose chacteristic
length is >> r, but << 4. This fact might possibly
find a practical application.

Some of the results on which this paper is based
can be generalized to quantum mechanics. The re-
sults of See. ITI generalize immediately to quantum
mechanics, and so do those of Sec. II provided the
boundary condition on the wavefunction is that
it must vanish when the center of any particle
touches the wall of the container. The main result
of Sec. VIII also generalizes to quantum mechanics
by virtue of Bogolyubov’s inequality.”® On the other
hand Sec. IV and V do not generalize so readily.
Unfortunately this means that we can at present
evaluate a(p, 0+) rigorously only for nonnegative-
definite Kac potentials, which cannot produce a
phase transition. Thus it remains to be shown that
a van der Waals phase transition can oceur in a
quantum system.

The results of this paper can easily be generalized

% Cited in Ref. 4 of V. V, Tolmachev, Dokl. Akad. Nauk
SSSR 134, 1324 (1960) [Engl. transl.: Soviet Phys.—-Doklady 5,
?84 (1961)]. See also M. Girardeau, J. Chem. Phys. 41, 2945

1964).
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to classical lattice gases. The proofs require only
minor modifications, and the main results (5.31)
and (5.32) are the same. Our results apply also to
Ising spin systems since these are isomorphic to
lattice gases. In this way the Bragg-Williams and
Weiss theories can also be dealt with in a rigorous
fashion.?®

Another direction in which our results might be
generalized is to weaken the conditions (1.20) and
(1.21). For example, for nonnegative-definite Kac
potentials the hard-core condition (1.20a) can be
replaced by the condition ¢(r) > const r*~° for
small r, which is sufficient’*® to ensure the existence
of a’(p) and a(p, 7). For more general Kac potentials
the hard-core condition plays no part in the upper
bound on a(p, 0+ ) but is used to restrict the number
of particles in a cell when lower bound on a(p, 0+)
is obtained. Possibly a more refined argument could
dispense with the hard-core condition altogether.

A more interesting extension of this work would
be to study Kac potentials satisfying neither of the
conditions (i) and (ii) given at the end of Sec. V.
For these potentials upper and lower bounds on
ap, 0+) do not coincide, and it is possible that
the behavior of the system is more complicated than
in the van der Waals theory. For example the Kac
potential might bring about spatial ordering with
a length scale ¥™'. Finally from the physical point
of view the most important extension of this work
is to study the properties of the system when ¥
is finite but small. This is now being carried out
along several lines.”
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26 In this connection see also the work of R. Brout, Phys.
Rev. 115, 824 (1959) (and later publications) who considered
expansions in the inverse number of interacting spins, and
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Representations of discrete symmetry operators (DSO’s) connected with space (@), time (T), and
generalized charge (@) are considered. It is shown that if one writes a DSO as exp (z2) X a phase
transformation, then (under certain conditions on Qs) to each DSO there corresponds a set of Qs which
is closed with respect a Lie algebra, which is isomorphic to the Lie algebra of generators of rotation
in an n-dimensional Euclidean space; where 7 is the number of commuting observables that changes
sign under this DSO in a given representation (e.g. linear momentum representation). In the particular
case of the (T e®) operation, there are six Qs, of which two are diagonal, viz. the generalized charge Q,
and spin projection along the z axis Sz; corresponding Euclidean group is four-dimensional. For the
sake of completeness, the representations are also given for the following cases: (i) nonrelativistic
quantum mechanics, (ii) quantum theory of free fields, in terms of field operators.

I INTRODUCTION

NE of the aspects of discrete symmetries’ that
has not been studied extensively has to do
with their explicit representations; the prineipal
reason for this is obviously the lack of immediate
physical application. The study of explicit expres-
sions for the representations of discrefe symmetry
operators (DOS’s) in quantum mechanics has a two-
fold importance. Firstly, it helps in a systematic
study of the subject; secondly, it is possible that
such investigations may throw some new light on
the connection between the discrete symmetries and
the other observables. This is then the motivation
for the present paper. Such expectation is not with-
out foundation. For we know that given a local
field theory which has the symmetry of proper
inhomogeneous Lorentz group (Poincaré group), one
obtains into the bargain T@@® invariance if one
quantizes this field theory keeping spin-statistics
connection in mind. The concept of Te® implies
the existence of concept of particles—antiparticles,
which did not exist in the unquantized theory. It is
therefore not frivolous to suggest that Te® may
be connected with some other group of which gen-
eralized charge is one of the generators. As we shall
find in Sec. IV, this is indeed the case.
To start with, in Sec. II the case of nonrelativistic
quantum mechanics is considered.

* Present address: Department of Physics, Indian Insti-
tute of Technology, Bombay, P.O.: I.I.T.-Bombay, Powali,
Bombay-76. .

1 The definitions of various discrete symmetry operators
in terms of their effect on observables is summarized in the
table. The notation has been so chosen that unitary symmetry
operators are denoted by script letters and the antiunitary
symmetry operators by ordinary Roman capitals.

In an earlier paper the author’ has given rep-
resentations for various DSO’s for free fields; how-
ever, these representations were in terms of creation
and annihilation operators in linear and angular
momentum representations. The representations in-
volving the direct use of field operators, rather than
their positive and negative frequency parts, have
not however been extensively treated.’'* The ex-
pressions for DSO’s in terms of field operators are
important for any extension to interacting fields;
Sec. III is therefore devoted to finding explicit rep-
resentations of DSO’s for the Klein—Gordon (KG)
and Dirac fields, in terms of field operators and
their first derivatives.

Finally in Sec. IV an attempt is made to write
down the symmetry operators in terms of (purely)
algebraic relationships that exist between DSO’s
and the operators for observables that change sign
under application of these DSO’s. As the defining

2 K. H. Mariwalla, Rev. Mod. Phys. 34, 215 (1962). The
complete list of references to the literature on this subject is
given in this paper. This paper will be referred to as (M1).

3 B. P. Nigam and L. L. Foldy, Phys. Rev. 102, 1410
(1956); representations of ® and @€ for the Dirac field are
given. However, the expression obtained for € is not correct
as it is assumed that Dirac spinors form a complete orthogonal
set relative to their Hermitian conjugates, rather than their
adjoints (which are distinct from Hermitian conjugates for
the Dirac field), as is actually the case. See Ref. 12 and the
remark following Eq. 12.

4 P. G. Federbush and M. T. Grisaru, Nuovo Cimento 9,
890 (1958); general formula is given valid for Klein-Gordon
and Dirac fields. However, the formula requires for its validity
the concept of “number ordering.”” Now normal ordering
consists in shifting all creation operators to the left of destruc-
tion operators using commutators for Bosons and anticom-
mutators for Fermions—i.e. for every interchange one
multiplies by a factor -+1 for Bosons and —1 for Fermions.
In ‘number ordering’ one uses —1 for Bosons and -1 for
Fermions. Hence, this contradicts the commutation relations.
Thus, if one uses ‘number ordering,’ one gets —2i [ by +th_y d%
for the right side of (10), instead of zero.
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table for the DSO’s shows, there are just three
such observables in the linear momentum rep-
resentation, viz. P, @, and Sz. Let n denote the
number of observables that change sign under a
particular DSO (the maximum is obviously three);
then one finds that one can associate with this DSO
2(n + 2)(n + 1) — n “generators,” which together
with the n ‘‘observables” satisfy a definite Lie
algebra. This Lie algebra is the same as that satisfied
by the generators of the rotation group in Euclidean
(n + 2)-space. For the particular case of the opera-
tion TCP in which spin and generalized charge
change sign, the corresponding Lie algebra consists
of 6 operators including Sz and @; this algebra is
isomorphic to the algebra of generators of rotation
in Kuclidean four-space. It appears that this four-
space is truly Euclidean so that the corresponding
group is compact.

II. DISCRETE SYMMETRY OPERATORS IN
NONRELATIVISTIC QUANTUM MECHANICS

Within the scope of nonrelativistic mechanics,
since there is no concept of an antiparticle, there
is no operation of particle conjugation either, though
formally the equations are invariant under the
change of sign of the electric charge. The non-
existence of the operator for charge conjugation is
connected with the fact that there is no nonrela-
tivistic operator for charge, as classically charge is
not a canonical variable.® Thus within the scope
of nonrelativistic quantum mechanics, there are just
three symmetry operators, viz. ®, 7, and their
product 1.

In order to construct representations for these,
first note that any unitary operator may be written
as exp (7aQ), where ¢ is a Hermitian operator and
a is a real number; we shall refer to @ as the “gen-
erator”’ of this unitary transformation. The object
then is to find Q. Now continuous symmetries are
characterized by invariance of a system under certain
kinds of displacements, whether linear or angular.
The number « in this case is a continuous parameter,
and © is a constant of the motion. On the other
hand, discrete symmetries (if at all) give rise to
multiplicative quantum numbers (e.g. ordinary
parity), and « is a fixed number—i.e. only for this
particular & is exp (fof2) a symmetry operation.
Consequently, while the DSO exp (iaf2) is itself a
constant of the motion, the “generator” @ is in

5 Recall that in nonrelativistic quantum mechanics canon-
ical transformations are also unitary. This is of course not
the case in a many particle theory, where the latter form only
a small subclass of the former.?n a relativistic field theory
charge conjugation is a unitary operator.
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general not a constant of the motion. Because of
this it is difficult to find the “generators” of discrete
symmetries by any general method. However, in
nonrelativistic quantum mechanies, it is possible to
construct representations of ®, 7', and I in terms
of the operators for coordinates and momenta. To
do this we need the following theorem:

If A, B, are two canonically conjugate Hermitian
operators, i.e. [A, B] = 1, then the set of operators

Q, = 3(AB + BA), Q, = 3(4® - BY), M
2 = %(Az -+ Bz)
generate the Lie algebra
[Q:, Q] = 20Qy; 2
the operators U; = exp (inQ;) then have the property
U;AU;' = — A, UBU;' = —B. 3

The proof is straightforward and will not be given
here. Note that Q, has the remarkable property® of
being a generator of rotations in the space of 4, B.
We remark that, whereas the operators U,, U; are
unitary and involutary, U, has neither of these
properties. However, U, has the useful property,
U.f(4) = f(—A), Uwp(B) = ¢(—B) for Taylor-
expandable f and .

In order to give representations for ®, we have
only to identify 4 — x, B — P in Eq. (2). For time
reversal, one has similarly,

T; = exp (ir Q) exp (xrS,)K, 4)

where K is complex conjugation; S, is the y-com-
ponent of spin, e.g. 3( 70) for spin % particles’;
and Q7 are obtained from (1) by the substitutions®
A —t, B— 1(9/9t). Finally for inversion, we have

where A —» 2z, = (z, @), B— P, = (P, iPy). In
this case I,, I,, I; are all unitary.

It is plausible that one can extend these considera-
tions to the case of relativistic wave equations and
to the free fields. The main difficulty that one
encounters there is the interpretation of a position
operator. Similarly one can find a representation in

6] am indebted to Professor E. Merzbacher for first
pointing this out to me for the case A = X, P = —{9/oz;
that Us behaves as a parity operator was earlier brought to
my attention by Professor E. C. G. Sudarshan.

7 An antilinear DSO always involves time reversal and
change of sign of spin; Wigner has explicitly constructed
this spin part; E. P. Wigner, Group Theory and Its Applica-
tions to Quantum Mechanics of Atomic Specira (Acacfemic
Press, Inc., New York, 1959).

8 Here the question might be raised about the Hermiticity
of —1id/ot; however, this is ensured by the Schridinger
equation and the definition of probability.
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terms of spherical polar coordinates. However these
matters will not be pursued here.
L. DISCRETE SYMMETRY OPERATORS IN

RELATIVISTIC QUANTUM MECHANICS:
FREE FIELDS®

The object of this section is to find formal expres-
sions for diserete symmetry operators which can
also be used for the interacting fields in quantum
field theory. As remarked in the introduction, the
explicit expressions for the DS(’s in terms of creation
and destruction operators in linear momentum rep-
resentation are given in (M1)*; however, these can
not be directly used for interacting fields as the
frequency splitting of the (interacting) field oper-
ators, and their relationship with the corresponding
frequency parts of the free fields is in general not
defined. On the other hand, if symmetry operators
were given in terms of the free field operators
(rather than the positive and negative frequency
parts), one could easily extend these expressions to
interacting fields; as the required symmetry prop-
erties of free and coupled fields are same at a given
instant of time, one has only to replace free fields
by coupled fields to obtain the required representa-
tions. We shall therefore deal in this section with
representations of DSO’s in terms of free field
operators. In order to construet these, one could
start with expressions in terms of positive and
negative frequency parts as given in (M1); how-
ever, the replacement of the frequency parts by the
field operators and their derivatives involves some
difficulties.

To illustrate the difficulties involved, we consider
the Hermitian KG field

s = [ oo &

X (bg exp (tkz) + by exp (—ikz)),  (6)
where kz = kex — of, o = +& + m)}; the
commutation relations are

[bx, by ). = 8k — K'Y,

[¢(z), ¢(x)- = D(z — '),
where D(z) is the Pauli-Jordan commutation func-
tion. It is obvious that the only nontrivial symmetry

™

* The transformation properties of the field operators
under the various DSQ' are summarized in Table II of
{M1). In what follows, the units are so chosen that & = ¢ = 1;
m stands for mass; (...)* = complex conjugate of (...);
(... = transposed of all c- and g-numbers (...); (...} =
Hermitian conjugate of (.. .); subseript 7' = transposed of v,
matrices and Dirac spinors, and reversal of faetors; super-
script T = transformed operator or vector; H.C.in [(...) =
H.%] implies Hermitian conjugate of (...); dot in & means
de/dt.
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operators that one can construct are ® and T, for
there is only one “degree of freedom”,® viz. momen-
tum (i.e. only momentum changes sign for both
operations, as spin and charge are zero). Further-
more, since a time-reversal operator (in a particular
representation) may always be written as a unitary
factor and complex conjugation, it is clear that in
this case the unitary factor of T is essentially the
same as ®. In terms of the by’s a representation
of @ (see M,) is

exp (pir [ dakb;bk)
x exp (—tin [ a'biby) e (—icr®),  ®

where @ is the operator of generalized charge, which
in this case is zero; the next factor involves the
number operator, and the last factor on the left
is responsible for the change k — —k, and is there-
fore, referred to as a ““discrete factor.” Taken by
themselves, each of the first two factors in (8) trans-
forms positive and negative frequency parts dif-
ferently by giving them- different phases; in this
sense they are nonlocal. In fact the number-operator
densities at two different spatial points do not
commute with each other, nor does it (the number-
operator density) commute with local operators, such
as Hamiltonian density and momentum density.
With this is connected the fact that whereas the
local operators such as the Hamiltonian, charge
and momentum densities may always be constructed
from the field operators, for the number operator
one must use only the positive and negative fre-
quency parts, because expressions of the type

[ @ = o8y s = s [ @r—bubi + bib) @

are c-members. Similarly it does not seem possible’
to construct [ d°kb b_x from the field operators
alone, as

j Ezlo(x, DE(—x, 1) — d(x, HP(—x, 1)}

~ i [ @rbubh ~ B (10)

vanishes identically. This difficulty also arises in
case of the number operator {(and some DS(¥s) for
the non-Hermitian KG and Dirae fields. Federbush
and Grisaru® have suggested “number ordering,” in

i From the point of view of the DS0’s, the pertinent
observables are those that change sign under a DSQ. The
use of the expressions such as ‘the only “de of freedom,”’
‘the number of “observables,” ? etc., should be taken to mean

the number of commuting observables that change sign (COTCS)
under a DSO.
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which one uses sign convention opposite to that
used in normal*' ordering; this however violates the
commutation relations.* Thus it appears not possible
to construct a representation of ® and T in terms
of the field operators for the Hermitian KG field.

For the non-Hermitian KG field, because of the
additional degree of freedom of (generalized) charge,
one can construct representations of ® and T':

® = exp (37Qp) exp (3inQ) exp (larQ), (11)
T = exp (—37Q,) exp (3inQ) exp (ie,Q), (12)
where @, = [ d’z{¢*(x, )¢(—x, t) — H-C-},

Q = fdax{d)*(x, HP*(x, —1) — $*(x, —)¢" (x, 1)};

the quantities 9, = exp (iap), 3, = exp (ta,) are
arbitrary phase factors of modulus unity; and @ =
t [ d’z(p’d — ¢’¢) is the operator of generalized
charge. In addition there are nontrivial operators
for €, S, &, and W. However, due to the difficulties
mentioned in the last paragraph, it has not been
found possible to construct these.

If one further introduces the degree freedom of
spin, it turns out that the remaining DSO’s can
also be expressed in terms of field operators. For
this we consider the Dirac field

4@ = [ Ph(t6rton) Tomss lals, Duals)

X exp (tkz) + ax(s, 2vx(s) exp (—tka)},  (13)

where labels r = 1, 2 refer to particle, antiparticles;
s refers to spin projection; A is an arbitrary normal-
ization which we choose as 3w; and the spinors u
and v obey the relations

Z' uka(s)akﬂ(s) = '_A(ikﬂ’u + m)aﬁ)

(14)
Za vka(s)ﬁkﬂ(s) = —A(ikuyu - m)aB}
e (S)un(s’) = —b(s)r(s’) = 2mAs,,, (15)
ug(Shun(s’) = vi(Su(s) = 2wAd,..,
U (S (s) = De(S)ue(s) = 0, forall s,¢, (16)
yu = iyw = —21Ak,, ky = tw,

where the adjoint spinors 4, & = u*vy,, v v, occur
in the development of the adjoint function ¥ = ¢ ..

11 Note that for the free fields, normal ordering becomes
necessary only for the Hamiltonian and amounts to renormal-
ization. For the charge operator one symmetrizes (Bose),
or antisymmetrizes (Fermi) the expressions in field operators.
That, incidently, is connected with why people used to think
in the olden days that spin-statistics connection had to do
with particle conjugation.
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It is clear from the above relations that v and v
form a complete set only with respect to their
adjoints and not with respect to their Hermitian
conjugates.® In addition we have the relations

b = Cax = Cuf, OviC' = —v,; (17
k() = (=D"ul),  vauk(s) = (—1)"uu(s),
(18)

where s (# s') refers to spin projection along ks,
and the symmetric matrix C; = —v,C; r = C'y,,
Ys = Y1V2Y3Vs

We note that as in the case of KG fields the
number operator cannot be constructed for the
Dirac field for the same reasons; the best one can
do is to have

f(';‘/’ — Yr¥ndz

= f ;"—L d’k Zl.r ax(s, r)ax(s, 1),

which is not a number operator due the factor 1/w.
A similar difficulty arises in case of € and S. Thus
for €, [ ¥'Ye d’x = 0, where ¢ = C¥r; also,

f('pll/e - ‘PeT‘;T)dsx

(19)

[P EHD G e, ), 20)

where again the presence of 1/w spoils everything.'*
In the case of strong reflection, [ ¢*y% d’z = 0, and
f (Wg - ¢T‘;§T) dax = 0; where \LS = 7740‘;7'(—2:;4)'

However, one can still construct the operators
®, T, I, and W directly; then in terms of these
one can construct € and S. We shall briefly sum-
marize the results.

() @ = exp (31w Q) exp (3inQ) exp (—iarQ),
@n

where

Qp

i

[ & pu-x, 9
— Vr(=x, Oz, DIz

12 In Ref. 4, the left-hand side of (19) is used as a number
operator and the left-hand side of (20) as the ‘generator’
of €. However, we have seen that these are not the proper
operators due to the presence of w. The reason they obtain
a different result is that they introduce an operator w, with
the properties wu = u, wv = —v, w? = 1, One example for w,
given, 1s in our notation, v Application of these properties
of w to (15) then shows that they imply m = «! It is only
in this case that v and » form a complete set with respect to
their Hermitian conjugates.
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(i) T = exp(—31rQ,) exp (—ta.Q)K, (22)
where
0 =14 [ duy'9r — gy,
'//1 = T\&(X, _t))
(ifi) I = exp (—37Q2) exp (—iQ)K, (23
where
w=epla), %= [ vyrde
and
¢1 = T'Y&'l/(_x) _t);
(iv) g ® = exp (3irQz)
X exp (—3imQ) exp (—iarQ),  (24)
where
e =2 [ 1 s = Yar¥d) + H-C-)d%,
& 4
and
Ve = 7.C¥r(—x, 1) = [‘/’+("X, HClr;
(iv)  ® = exp (—37Q%) exp (—iaz), (25)
where

% =1 [ 10 — i) — H-C)P;
(W W = exp (zinQw)

X exp (—3imQ) exp (—iay@K,  (26)

where
2y =1 [ 1098 — vavd) + H-C 1%
2
and.
Yw = 1C¥r(x, —1);
V) W = exp (—ix Q) exp (—iawQ), @0
where
% =1 [ 10708 — Whayd) — H-C-Ji'%;

(vi) Particle conjugation; using @, and Qy:

C = exp [3n(Q, & iQy)]
X ‘exp (F#irQ) exp (—ia.Q),  (28)
€ = exp [£ir(Q, — Q)] exp (—ia.Q);

similarly, one can construct € from Qp and Qg;
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(vii) Strong reflection; this can be constructed
from any of the following sets of operators: (®, W),
(T, &), and (I, T, W)| as an illustration we con-
struct from @ and W:

S = exp 3 (Q)y £ 195)]
X exp (F3irQ) exp (—ias@Q)K,  (29)
S = exp [3(Qw + 2r)] exp (—ias@K. (30)

We remark in conclusion that it appears from
the above constructions that for Bose fields € is
not, a “local’”’ operator; and @, T are both “non-local”
for the Hermitian KG field.

IV. DISCRETE SYMMETRY OPERATORS IN
RELATIVISTIC QUANTUM MECHANICS: A
FORMULATION INDEPENDENT OF A FIELD
CONCEPT

In this section we seek to develop a method by
which one can write down explicit expressions for
symmetry operators without reference to either field
operators or their positive and negative frequency
parts, using mainly the general properties such as
their effect on the observables. That is, the method
is more or less purely algebraic. At the outset let
us state that no claim to rigor is made; the approach
is quite pedestrian. However, it is hoped that it
would be possible to put it on a more rigorous basis
at the later date.

To begin with we remark that symmetry operators
commute apart from a phase factor; consequently,
one can factor a symmetry operator into a factor
that essentially corresponds to a phase transforma-
tion and a factor (to be referred to as a ‘““discrete
factor”’) that is responsible for the discrete change.
These discrete factors will be unitary and may be
written as exp (¢8Q.), where 8 is a real number
(generally ir) and Q, is a Hermitian operator to
be referred to as a “discrete generator” (DG) of
the DSO U. Now, clearly the ‘discrete factors,”
and (hence?) also the “discrete generators” of dif-
ferent DSO’s commute. This follows from the fact
that the identity operator and a DSO together con-
stitute a group. However, since we are considering
all possible DSO’s connected with space, time and
charge, one DSO can always be written as a product
of others; as a result it should be possible to relate
DG’s of different DSO’s. To establish this connec-
tion, we assume that each DG ecan be expanded
in terms of operators with a certain complete set
of labels; thus, e.g., for a spinless, chargeless particle,
we write @, = [ o d’k. We then obtain two results:

(i) Integrand operators, such as, a* for different
DG’s satisfy a Lie algebra such as: Eq. (40);
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(i) For a particular DSO, there are more than
one DG’s; these DG’s and the commuiing set of
observables that change sign (COTCS) under this
DSO generate a Lie algebra which is same as the Lie
algebra of the generators of rotation in a Euclidean
N-space-the number of COTCS under a DSO being
(91—2). Next we determine the * phase” transforma-
tions which clearly bring out the distinction be-
tween integral and half integral spin fields.

We shall work throughout in the linear momentum
representation; however, the developments can be
carried over into any other representation mutatis
mutandzs.

We first consider the case of a particle whose field
analog is a Hermitian KG field. The simplicity
of this case lies in the fact that there is just one
“observable” (COTCS) viz. linear momentum, that
can possibly change sign under a DSO. The DSO’s
involved are just ® and T'. We start by writing

® = exp (377Qp) X a phase transformation, (31)

where the first factor is a ‘‘discrete factor,” and the
Hermitian operator Qp is the ‘“discrete generator’.
Now in field theory the observables can in general
be written, e.g. in the coordinate representation, as
integrals of certain “densities” in coordinate space;
these densities are expressed in terms of fields func-
tions (which are operator valued functions of coor-
dinates) and their derivatives. Since one assumes
that the Fourier transforms of field functions exist,
one can also express the observables as integrals
over certain operator valued functions in momentum
space (k-space). Following this clue from field theory,
we shall assume that one can always write the Hermitian
““generators’, such as Qp, as tntegrals of certain operator
valued functions. In particular, in the discrete linear
momentum representation, we write Qp = > x o,
where the o are, in general, non-Hermitian; to
insure the Hermiticity of @, one puts the condition
o = (a”¥)". Since k,, ks, -+ form a complete set
of labels, one can consider o* independent for dif-
ferent k; then it is clear that the commutator
[*, ®']_ is proportional to &x,_y. = 8y . Further-
more, the commutator is Hermitian and antisym-
metric with respect to k, X/, so that one can write

(32)

where oy are Hermitian; the notation has been so
chosen that the upper index labels non-Hermitian
operators, nondiagonal in this index, and the lower
index implies Hermiticity with respect to this index.
We should emphasize at this point that in obtaining
(32) we have made two essential assumptions which

[, &' ]- = Suw-(ox — o),
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are not altogether independent, viz. (1) one can
always write a generator as an integral or a sum
over certain operator densities, thus e.g., @, =
D & (2) the o* for different k are independent,
except for the comnection a™* = (a*)*, which
arises from the Hermiticity of Qp. Alternately one
can take (32) as an Ansatz."

In order to evaluate [@¥, ay ], take the commutator
of (32) with o’ and ey..; we shall not do that.
Instead note that, in virtue of (32), [e¥, ay ]- is
nonzero for both k = k’ and k = —k’ and may
therefore be taken as proportional to (§xx: — dxi-).
Moreover, since a, are Hermitian and o non-
Hermitian, the commutator will be non-Hermitian,
so that, one can write

[ak,akr]_ = (Skk' - 5kk')ak, (33)
which may be verified to be consistent with (32).
Using relations (32) and (33), one can show that
under the similarity transformation
® ~ exp (317Q5p), (34)
the operators a*, a; are transformed into a™*, a_y,
respectively. Hence, for Qr to be a ‘“discrete gen-
erator,” the suitable definition of the momentum
operator is
P = Zl’: k[ak:a_k]— = Z xRoy, (35)
where the prime on », denotes summation over
half the k-space only, say k; > 0. It is clear from
(35) that, to obtain correspondence with field theory,
one must identify a, with n,—the k-space particle-
number density. Similarly one can write for the
time-reversal operator

T ~ exp (31rQ)K, Q = Qp, (36)
which clearly anticommutes with (35). We remark
that Q, is not the only discrete generator of @.
Let us define the “momentum density” by p =
2! (ax — a_y); then the operators QF = 1Q,,
Q) = —10%, Qfl., 9% = 1P satisfy the angular

momentum-type commutation relations™

13 This point has been stressed by the referee who points
out ‘that in free field case the observables are not only inte-
grals over densities ‘“which can be expressed’”’ in terms of
field functions, but that the densities are bilinears in the
field functions, which in turn obey the commutation relations
of the form [4, B]. = c-number, i.e. which reduce their degree
by two. It is because of these two properties that a commutator
in the observables becomes linear In the observables, as in
(32), and leads to a Lie algebra.’

K E, C. G. Sudarshan [Proc. Indian Acad. Sci., Sect. B,
49, 66 (1959)] has discussed the case of representation of @
for spin 4 case from the same point of view. He remarks that
the representations of discrete generators for @ for spin % case
are unique in that they are same as the generators of rotation
group in three dimensional coordinate space. In this con-
nection, see also E. Cartan, Lecons sur la theorié de spineurs,
Herman, Paris (1939). In our case ‘“discrete generators’ for
@ are generators of rotation in an abstract three-dimensional
space and this holds for both integer and % integer spins.
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[QIZ) Q:]— = ielmn9:1 (37)

where ¢,., 18 the Levi-civita symbol; hence, exp
(7wQ%) is an equally good ““discrete factor.” This may
also be verified directly.

The case of non-Hermitian KG field is analogous.
Here there are two COTCS’s, viz. momentum P,
and the generalized charge . Hence, in analogy
with the Hermitian case, we expand Qp = > ., ¥,
Qe = D x.. ay, where r = 1, 2 denote particle and
antiparticle, and (o®)* = oJ*, (ag)* = o, r = 7.
Then using the arguments analogous to those em-
ployed for setting up commutation relations (32, 33),
we arrive at

(l, m,n =1, 27 3):

[akr) alf':]— = Brr' gkk’(akr - ak’r’) (38)
[a;xr al::]— = srr’akk’(akr - ak’r’) y (39)
where §,,. = 1 for r # " and zero otherwise. Since

it follows from the group property that the operator

o®" in the expansion of Qi is proportional to the

commutator of of and «/, a careful analysis leads to

[e%, o] = & 8xx-8, — @ By 8,rr; (40)

[0, "] = Sxnrdrrr(or — ors). (41)
One has further with obvious symmetry

[a'ﬁ, ak,"]— = 3kk'(3n'a; - 3,,»01123), (42)

[, el = 8 (Sunar — Sxa%).  (43)

The observables P, @ may be defined in terms of
these (as before), in more than one way; thus,

P = > 4klt o "]

= 2k 2 K, a7, (49)
Q= 2 (=1 ok, o™l
= Zk (—1)'“[ak', a—kr'#r]‘. (45)

Again oy, may be identified with a number operator
to obtain correspondence with field theory.

As in the Hermitian case, corresponding to @,
there are two “discrete generators”

of =30, O = —i[@f, 9f],
where

Q=320 >, [ ek

Similarly corresponding to €, which changes only
the sign of @, the “discrete generators” are

these together with 0§ = 1Q obey the commutation
rules such as (37). In case of ®, there are two
COTCS’ viz. P and Q. Instead of P consider f;

K. H. MARIWALLA

let

Q, Qs =3P

These operators generate a Lie algebra of six elements
(e, e = ifi? (I, m,n=1,2---6), (46)

where f;., is completely antisymmetric and f,3s =
fsel = f345 = feu = +1.

It is clear from the above examples that whereas
in case of ® and €, only one “observable” changes
sign (P and @, respectively), and therefore the Lie
algebra of their generators is the same as that of
the rotation group in a Euclidean three-space, in
case of R where there are two COTCS, the Lie
algebra of the generators is the same as in a Euclidean
four-space. One can generalize this result by induc-
tion. Consider a DSO which changes the sign of
n commuting set of observables. The first DG may
be written as @, = 3 > a®* """, where each of
the a; has two values; set up commutation relations
of the type (41) and write down the expressions
for the n COTCS by the method of Eqs. (44) and
(45). Find in(n + 1) commutators of @, with =n
COTCS; these together with @, furnish in(n+1) +1
DG’s. The (3n + 1)(n 4+ 1) operators form a Lie
algebra isomorphic to the Lie algebra of generators
of rotation in a Euclidean (n + 2)-space.’® The
rank of the Lie group corresponding to the Lie
algebra is obviously =n.

To show that our conclusion regarding the algebra
of the “generators” of a DSO is correct, we consider
the example of the inversion operator for spin-3
particles. Under inversion the only ‘“‘observable” that
changes sign is S;. By Wigner’s construction the
representation is

o=

of =10, 07 =

Wl

I ~ exp @rS)K. @7
Since [S;, S,] = 4S., one can also write'®
I ~ exp (in8,) exp (irS:;)K. (48)

As 8; is diagonal, 8, is as good a candidate for a
discrete generator as S;; S, and S, are therefore
the only two ‘discrete generators’ of I, and rank
of the group is one.

18 In other words, corresponding to a DSO U, its » COTCS’
and in(n + 1) + 1 DG’s together form a Lie algebra such
as (46), which is isomorphic to the algebra of generators of
rotation in a Euclidean (n - 2)-space. The corresponding
Lie groups are locally isomorphic in the sense that they have
the same covering group.

16 Where use has been made of the Baker-Hausdorff
formula; see e.g. G. H. Weiss and A. A. Maraduddin, J.
Math. Phys. 3, 771 (1962), where other references are given.
As in the present case since we are not dealing with a ‘free’
group one must be careful in making any unrestricted use
of the “polar operator’”’ of Hausdorff.
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One can analogously discuss other operators for
the spin-half case. In particular we note that for
strong reflection the corresponding Euclidean space
is 4-dimensional and for W it is 5-dimensional. For
the sake of completeness we give the necessary rela-
tions in terms of the &’s for the spin half case. We
postulate the operators «f, o, and o), where
s = 1, 2 refers to the spin projections -+3%, —3
along the z axis. The self commutators for these are

[aakn aak"r']— = gkk’saa’arr’(akcr - ak'l'r')r (49)
ak'l’r’)v (50)
[05‘1:, a:(,’”]— = akk’ gac’ Srr‘(aktr ha ak’n’r’)' (51)

One can define o**", &*°, and o}, in terms of these
as for the non-Hermitian KG field. Similarly, the
observables P, Q, S; may be written in more than
one way. Thus, e.g.

[a;(n a;”c’]— = akk’aaa'srr’(akar -

P= >4 . ko, o], ete., (52)

Q = 2. ok, ok, (53)

S =% Dk.r [oke, 0ir]-. (54)
Obviously then

Se =3 2k (=) okar, (55)

8. = ¥ Dewrr (—1) ks, (56)

Si =1 Dkierr @b (67)

So far in writing down the representations, we
have disregarded any phase factors; we saw that
in the approximation that a DSO is replaced by
its “discrete factors’ there is no essential difference
in treatment of Bose and Fermi particles. However,
there is a possible effect on the structure of a DSO
due to the connection between the intrinsic spin
of the particle and the permutation symmetry of
a many particle state. Thus, e.g., acting on a one
particle state ®&*, T?, W?* give, respectively, -1,
+1, +7% for Bosons and —1, —1, — n% for Fermions.
Again one finds that

[W, @] = 0 for Bosons and [W, @], = 0 for Fermions.
(58)

If one demands'’ that 5,-the arbitrary phase factor
associated with strong reflection is real (Z=1), then

[I, €] = 0 (Bosons), [I, €], = 0 (Fermions),

[®, T). = 0 (Bosons and Fermions). (59)

7 This is of course implied in Luders’ proof of the TCP-
theorem. [G. Liiders, Ann. of Phys. (N. Y.) 2, 1 (1957)] and
suggests a connection between multiplicative symmetries
and the TCP invariance. Thus see, e.g., G. Feinberg and
S. Weinberg, Nuovo Cimento 14, 571 (1959).
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Thus we conclude that the representations without
some additional phase factors are not complete.
Actually this should be obvious, for we found that
for a given DSO, the DG’s and the commuting
observables that change sign (COTCS’) under this
DSO generate a Lie algebra; hence, the general rep-
resentation will be of the type

exp (ta, ‘DG’) exp (i, ‘COTCS’). (60)

In addition, one can include a factor exp (¢8Q)
(B = real, arbitrary; @ = generalized charge), which
gives rise to an arbitrary phase factor 5 = exp (¢8)
for each one-particle state,'® this can always be done
as generalized charge is rigorously conserved. In the
following we briefly indicate the arguments for find-
ing the phase factors.

1. Since €* = -1 for both Bosons and Fermions,
a factor such as exp (34mQ) has no significance;
hence, for an arbitrary real 8,

@ ~ exp (ir Q) exp (18Q). (61)

2. For time reversal both P and S; change sign;
but since momentum is not an intrinsic property
of a particle, the use of P as a generator of a phase
transformation is irrelevant. Hence, one can write

T ~ exp (irQ) exp (irS:) exp (BQK; (62)
then clearly T° = exp (2iwS;) as required. Similarly

W ~ exp (ix Q) exp (ixSs) exp (iBQ)K, (63)

which gives W? = exp (2inS;) exp (¢vQ).

3. In case of @, for fermions, we know that the
parity of afermion and its antiparticle are opposite.*’
This corresponds to the well known fact that an
electron-positron pair in a singlet s-state decays into
two photons which have perpendicular polarization.*
Thus

CPrermi ~ exp (17 Q) exp (3irQ). (64)

The factor exp (}irQ) will occur in all operators
involving space inversion, e.g.

(B-Fsrmi ~ eXp (irﬂrf) eXp (%iWQ)v (65)
Treormi ~ exp (i7Q]) exp (ixS;) exp (3inQ). (66)

18 For a neutral particle 5, = =£1, so that parity is 1.
One generally uses 7%, = -1 for Bosons; 41 or —1 for
fermions; and ng = =1 for both bosons and fermions; on
the other hand, the phase factors ¢, %z, 77, 71 are indeter-
minate.

19 This is actually connected with the properties of two-
valued representations of the Lorentz group. However, we
will not go into this aspect.

20 R. C. Hanna, Nature 162, 332 (1948); C. S. Wu and
1. Shaknov, Phys. Rev. 77, 136 (1950). The “charge parity”
of the pair is of course 1.
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It is verified that ®) = exp (#xQ); I2 = exp (2ixS;).
Similarly for strong reflection we have,

Sy = exp (ir®) exp (rSs)
X exp (3rQ) exp (18Q),

which satisfies (58) and (59) for exp (¢8) real.

Finally we note that since DG’s form a Lie
algebra with operators like (1), which have half
integral eigenvalues, we expect that each ‘“discrete
factor” gives rise to a factor &4 for each one-particle
state. Since for Bosons the factor exp (3¢r@) does
not oceur for @, and S; is integer, the net effect
is to give an imaginary parity to a one-particle
Bose state; this hardly makes for consistency.
Furthermore, when operating on a field operator,
a discrete factor will give differing signs to positive
and negative frequency parts, which is not con-
sistent, since a field operator should transform as
a whole. To correct for this one can include the
factor exp {3r 2 xer 0x.,} for Bosons. This com-
pletes the construction.

In conclusion, we remark that if one requires of
representations of DSQ’s only to satisfy their de-
fining relations in terms of the effect on the observ-
ables, then the use of the operator  u,, @i, is
redundant and the representations are completely
defined in terms of the generators of rotation in
an appropriate Buclidean space. However, we note
that whenever linear momentum changes sign, to
be consistent, one must introduce the operator iP
in the algebra of “‘generators’ rather than 1P which
is an artificial entity. This difficulty is not present
for strong reflection (CPT); here the algebra has
six elements, including S; and @, which are both
related to the “intrinsic’ properties of the particles;
the corresponding rotation group is four-dimensional.
A possible physical significance is the following.
Consider the complex Lorentz group: a set of com-

(67)
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Tasre I. Definitions of discrete-symmetry operators in
terms of their effect on coordinates (x, ¢} charge (@), linear
momentum (P), and angular momentum {(J = L + 8S).

I x ¢ P’ QI }f

1. Identity & +x 4+t +P +g +]J
2. Space inversion ® —-x -+ ~-P +Q +J
3. Particle conjugation € +x -+t +P -@ +]J
4, Reflection ® —x + ~-P -9 +]J
5. Time reversal 7' 4x —-t -P +Q@ -]
6. Inversion I —-x =t +P +@ -]
7. Weak reflection W 4+x ~¢t P =0 -]
8. Strong reflection § —-x ~t +Pp —-@ -3

plex (infinitesimal) linear transformation which leave
the complex (z; = z; + 7y;) form

F=2z+4z+2—2 (68)

unchanged; it is clear that (68) is also the complex
form (up to an isomorphism) of the real form

F' = 2 + 2} + 23 + 44, (69)

which is its unique (up to an isomorphism) compact
form.”” Since (69) is the Euclidean group, one can
label the representations by two numbers; in a
particular representation one can take these to be
S, and #@; and one can interpret the ‘‘discrete
generators” of S together with 8, and 1Q as the
generators of rotation in the space defined by the
form (69). It then becomes clear, how in the complex
group, S is continuously connected to the identity.”
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The exact energies and wavefunctions for & system of (N — 1) one-dimensional fermions all of the
same spin and one fermion of the opposite spin are calculated in the large volume, finite density
limit, when the particles interact via an attractive delta function potential. It is found that the
attractive potential gives rise to a bound state, but, in spite of the presence of this bound state, all
of the physical properties which are calculated (ground-state energy, effective mass of a certain class
of excitations, etc.) are analytic continuations in the coupling constant of the corresponding results
in the repulsive case. In addition, it is possible to have eigenstates which do not have the bound
state present. These excited states are also discussed and are found to exhibit a negative effective mass
and to modify the particle density at very large distances from the different particle.

I INTRODUCTION

N this paper we will continue our analysis of the
one-dimensional fermion problem, where the
fermions interact with an equal-strength delta func-
tion potential. This paper is intended as a companion
to Ref. 1 (hereafter called I) and also considers
the case where (N — 1) fermions are spin up and
one fermion is spin down. This paper, however, takes
the delta function potential to be attractive.

The change from a repulsive to an attractive in-
teraction is brought about by changing the sign
of the strength parameter, g, in the Hamiltonian.
Making this change we obtain the Hamiltonian
which describes the attractive interaction,

2 2
H = —%j 5,.:%‘:‘?“ g ZZ 5z — z.).
The strength g is assumed to be always positive.
Henceforth, we will use units such that i = M = 1.

As in I the first task is to obtain the finite density
limit from the scattering solutions which were ob-
tained in Ref. 2. The procedure is a two-step process:

1. Apply periodic boundary conditions to a scat-
tering solution for a fixed number of particles.

2. Allow the size of the periodic box and the
number of particle to become infinite in such a way
that the density is constant.

Step 1 is carried out in exactly the way which
is discussed in Secs. I, II, and III of I. The only
change which is required to carry this part of the

* Work carried out, in part, at the University of California
at Los Angeles and with the financial support of the National
Science Foundation, and in part supported by the U. 8.
Atomic Energy Commission, while a Visitor at Brookhaven
National Laboratory.

1], B. McGuire?vJ . Math. Phys, 6, 432 (1965).

2 J. B. McGuire, J. Math. Phys. 5, 622 (1964).

analysis over fo the attractive case is the change
in the sign of g. The result of step 1 is a set of rules
for calculating the wavefunction. We shall restate
the rules as they apply to the case of an attractive
potential. The notation is the same as in 1.

1. The spectrum is given by selecting N Roots
of az + ctnz = const., where ¢ = 4/gL, z = k,L/2,
and g > 0. Subject to the additional constraint

ZZ; = fr.

2. The wavefunction is given by calculating the
amplitudes of N! plane waves in each region of an
N-dimensional configuration space. We select as the
basic amplitude

(123---N), =1—e*t=

= —¢

—2i™ ¥ sin k,L/2

(T

sin 2,

where region 1 is z; < 2, < 23 -+ < %y The
amplitude of any other plane wave in this region
is determined by two considerations:

{a) The % associated with particle 1 determines
which & appears in the numerical expression for the
amplitude,

(b) The amplitude is modified by a = sign accord-
ing to whether it is an even or odd permutation
of (1,2, 3,4, -+ N). For example,

(@231 N)y = —(L —e™™*) = 42ic""*sinz,.

3. The amplitude of a given plane wave in some
other region is caleulated by first finding the ampli-
tude of that plane wave in Region 1 and multiplying
that amplitude by a factor of ¢***¢ for each particle
that z, has passed. For example, in the region
Ty KTy K2 <2y <25 00 < Ty,

(¢234---1---N) =

— (1 _ eikwL)ezi(n—l-n-l-u)

123
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Fia. 1. Sketch of the graphical to the equation az 4 etnz = 0.

II. GROUND-STATE ENERGY OF THE
SYSTEM

This set of rules allows us to calculate the ground-
state energy of the system at a fixed density of
particles. Fixed density, of course, implies a fixed
background density of spin up particles with one
particle spin down.

We must choose N roots of the equation

—az — ¢ = ctn z.

Subject to the constraint that the sum of these
N roots is nw. The energy will be given by

2
E=1—2'Zz§.

The constant ¢ must be real, for as we shall later
demonstrate, it is related to the total momentum
of the system. The ground state of the system will
oceur when ¢ = 0, which we will show explicitly
when we analyze the excited states. Therefore we
focus our attention on N roots of the equation

—az = ctn z.

Figure 1 gives a graphical representation of the
roots of this equation, provided the roots are real.

Since we are analyzing an attractive potential
we would expect that the delta function bound state
would play some role in the ground state of the
system. Let us allow z to be complex:

z2 = a4 18,

tan a(l — tanh® §)
tan® @ 4 tanh® 8

_ ;tanh (1 4 tan’ o)
tan® & 4+ tanh® 8

—ala + 18) =

Separating this relation into real and imaginary
parts will give us two transcendental equations with
two unknowns. Let us first examine the imaginary

MCGUIRE

part

of = tanh g(1 + tan’ o)
tan® @ 4 tanh® 8
Figure 2 is a sketch of the graphical solution
of this equation. The function on the right is bounded
by f(8) = tanh B, (x = 0), and f(8) = coth B,
(a = 7/2). We are interested only in the case where
a < 1, which is the large volume (large L) limit.
Thus it is seen that all of the solutions occur where

+af = tanh 8 = coth g =< 1.

Under these conditions the equation for the real
part of ctn z is essentially independent of 8 and is

It

a = 4 sin « cos ale™**/a)

= (, in the large volume limit.

Thus we see that there are but two imaginary
roots of the spectral equation where 8 = +(1/a).
The remainder of the roots must be real. This would
be expected because the bound state of a delta-
function potential is spatially symmetric and with
only one spin-down fermion there should only be
one possible bound pair.

We now use the technique of I to calculate the
energy, using the fact that two of the 2’s are im-
aginary,

2 = i/a = 'L.gL/4,
—ifa = —igL/4.

All of the positive real roots may be approximated
by

29 =

2} = s — ctn™* (sar)

to order a. Similarly, the negative real roots are

—sr -+ ctn™ (sax).

z, =

Fia. 2. Sketch of the graphical solution to the equation a8 =
tanh 8(1 4 tan? «)/(tan? « + tanh? ),
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The energy is

2 2
E = j:‘ ( 2) + 1;2 ;g; 24
3 3(N—2)
-9, 4 2 _
E = 4 + 73 g:l [(sm) 2sm

X ctn”! (sar)] + 0(11—V>

The second term is just the energy of the (N — 1)-
particle background Fermi gas. Let us calculate the
energy shift caused by the different particle

E—-EN-1)
2 $(N-2)
= - _9 _ 8 -1
= AE = i I2 .Z-x st etn™" (sar).

Converting the sum to an integral we have
2k¥/g
AE=——!—]——Lf y etn™! y dy.
[

Where k; is the Fermi momentum of the back-
ground. Performing the integration and rearranging
terms gives

AE__k

g
[2kF + tan™ 5

+ (21@) ( + tan- 2kn):|

As g — 0, AE — 0, as it should, for no interaction
should cause no energy shift. If g becomes very large,

= —(¢*/4) + 0(9),

which is just the binding energy of a pair of particles
in an attractive delta function potential.

This energy shift is the same as the energy shift
calculated in I (repulsive potentials), with —g sub-
stituted for g.

III. GROUND-STATE WAVEFUNCTION

Now let us discuss the nature of the ground-state
wavefunction. In region 1 (z, < 2, < 23 *++ < Zy),
we may calculate the amplitude of any plane wave
from the wavefunction rules of Sec. I. In particular,
let us calculate (123 --- N),, (123 .+ N); =
1] — e =1 — ¢”* =1 — &Y, Thus this
amplitude, and all of the associated (N — 1)!
amplitudes which come by permuting the numbers

. N, are exponentially large in the large volume
limit. The amplitude

—(@21:--N), =1—¢>

=1 ¥t = ] — g hD
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is of order unity in the large volume limit. The
remaining amplitudes are all calculated with real
k's in Region 1, and are thus qualitatively quite
similar to all of the amplitudes in the repulsive case.

If we now move on to Region 2 and calculate the
amplitide (123 - - - N),, we obtain

(123 --- N), = (1
=e—i(nL)(1_

e}(aL))
e%(vb)) = e-i(vb) . 1,

which is again of order unity.
The amplitude

(21 -+ N); — ¢(21 -+ N),

— e‘}(vE)(e—}(vL) . 1) =1 —e
and hence is boosted from order unity to something
exponentially large in the volume. In general, moving
to Region 2 implies multiplication by a phase shift
unless Particle 2 is part of the bound state.

If we continue moving from region to region, we
can calculate the wavefunction everywhere. In every
region we will find that some amplitudes are ex-
ponentially large and the remainder are of the order
unity. In the large volume limit the exponential
amplitudes are dominant. This dominant wavefunc-
tion may be described as follows:

<L)
?

1. The particle with 2, must be to the left of the
particle with z,.

2. The spin-down particle must either have z, or
2, or be between the two particles which have z,
and z,.

If the density were zero we would say that the
different particle would have to be involved in the
bound state, since it is the only particle with which
a spin-up particle can bind. We find now that at
finite density the different particle may have a real
velocity associated with it, but it is always trapped
by the bound-state wavefunction. That is, the differ-
ent particle may have a real velocity only if it is
‘4in transit’” within the bound state.

IV. EXCITATION SPECTRUM OF THE SYSTEM

Now we calculate the excited states of the system
and attempt to calculate the energy of excitation
as a function of the total momentum of the system.
As in I, we focus our attention only on excited states
which arise from the collective interactions of the
different particle with the background, and not on
those excitations which are ordinary Fermi excita-
tions of the background alone. In order to do this,
we make use of the freedom of allowing the constant
in the spectral law to have any value we choose,
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provided the sum of the z,’s is an integral multiple
of =.

The program is basically the same as was followed
in I. First we find both the energy and total momen-
tum as a function of the constant in the spectral
law, and then eliminate the constant in the expres-
sion for the energy to obtain the energy as a funection
of total momentum.

First we must contend with the problems which
arise from the imaginary (or complex) roots to the
spectral equation. Again we restrict ourselves, a
priori, to a constant which is real, and justify this
assumption with the conclusions to which it leads.

If we assume that the 2,’s have both real and
imaginary parts, we obtain the relation

tan a(1 — tanh® §)
tan® & + tanh® B

_ ita,nh B(1 + tan® @)
tan® a 4 tanh® g8

ale + 18) =

+c

If ¢ is real, the imaginary part of this expression
reads
tanh 8(1 + tan® @)
tan® o 4 tanh® 8 ’

which is the same expression we had in the previous
section. It has the property that 8 = 1/a is a solution
for a small essentially independent of «. This solu-
tion for 8 implies that tanh 8 ~ 1, and thus that
the real part of ctn 2z is essentially equal to zero
(again as argued in the previous section). This
implies

af =

aa = C.

Hence, with ¢ # 0, there are two complex con-
jugate 2’s, and all of the remaining 2’s are real.
We now have the following array of 2’s:

z, = (¢c/a) + (i/a),

(c/a) — (i/a),

2} = sv — ctn”? (sar — ¢),
2, = —sm + ctn™? (sar + ¢).

&
Il

Let us now calculate the total momentum of the
system.

___Z %

$N-2)

Z [etn (sar + ¢)
— ctn (saw — c)].

Changing sums to integrals we obtain

4 ¢ 2k¥F/ ¢
k= aL " Lar f [etn™ (v + ©)

—ctn”' (y — ¢)] dy.
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This provides a transcendental relationship be-
tween &£ and c. In general, it is very difficult to
manipulate, but we can get an idea of its meaning
if we expand the integral for small ¢ and do the
integral. Under those circumstances we obtain

= (4c/al)[1 — (1/x) tan™" (2kx/g)].

Thus, for small ¢, k is proportional to ¢. This
justifies our choice of a real constant at the beginning
of this analysis, for k itself must be real.

Now let us calculate the energy of the system
as a function of ¢,

2

462 4 4 3(N—2)
asz - asz + ZE g

3(1\’—2)

= 2 swletn™ (sar — ¢) + ctn”* (sar + ¢)].

8=0

Lz (21 +25) + Lz rZ z;

eal z

2 2
ST

The third term on the right is again just the
energy of a Fermi gas of N — 1 particles, so we
again define an energy shift whichis £ — Ex(N — 1).
Converting the sums to integrals this energy shift is

4
AB©) = s~ Ty

2

2kr/y
X [ dletn™ (v = o) + ot (v + ) dy — &

Again, in full generality, this expression is dif-
ficult to interpret. The small ¢ expansion, however,
contains a great deal of information. If ¢ = 0 we
recover the energy shift which we calculated in the
previous section. It is easy to see that dAE/d¢ = 0
when ¢ = 0, so the lowest order in a power series
expansion is ¢’. Expanding and doing the integrals

we obtain
2 1 [ -1 2kg 1(%ky) ]
2L2{1 e Ty

The second factor of this expression is positive for
all values of 2k /g, and thus we see that our previous
assumption that ¢ = 0 was the condition for the
ground state was correct.

If we now eliminate ¢ in favor of k in the expression
for the excitation energy, we find

_El 1 [ -1 2k
AE, = " {1 - tan p
2ke/g

+ m}} /(1 = Lo Zer)”

AEy(c) =
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Now we ean calculate the effective mass of these
excitations from the expression

E = */2m*.

2
m* = ’[2(1 — 'l-tan" “2—1@) ]/{1 1 [tan" ke
™ g ™ g

+ 2kr/g ]}—1
1+ 4k%/g° 1) -

As g tends to zero (weak interactions), m* ap-
proaches 1, indicating that the excitations have the
effective mass of one of the fundamental fermions.
As ¢ tends to infinity (strong interaction), m*
approaches 2, which means that the bound state
is so tightly bound that the two bound particles
operate as a single unit.

These results, the ground-state energy, the excita-
tion energy, and the effective mass may be obtained
from the corresponding results for the repulsive in-
teraction by simply changing the sign of ¢, Perturba-
tion theory, which relies upon complete analyticity
in the coupling constant, confirms all of these results
by duplicating (at least to third order) the small
g power series for these quantities. It seems sur-
prising that the rather extreme differences in the
calculations (i.e., the explicit inclusion of the complex
roots in the attractive case) give rise to a simple
analytic continuation of a series in g through the
value ¢ = 0. This principle of analyticity is valid
even for calculations involving the wavefunction as
we shall now demonstrate by showing that the
ground-state pair-correlation function also has this
property.

V. GROUND-STATE PAIR CORRELATIONS

The pair-correlation function is defined to be
L L
P(xh xz) = f B f dxs - de
0 0

DRt AR 0 112 (A 0

This function gives the relative probability to find
particle z at z;, given that Particle 1 is at z,, Of
course, Particle 2 is the same as all of the other spin-
down particles, and thus this function is equally
well interpreted as the spin-up-spin-down pair-cor-
relation function.

It has been pointed out to the author® that the
derivation of the pair correlation in I is incorrect,
although it will turn out that the answer is right.
We will correct the derivation here, and calculate
the pair-correlation function for the attraective case,

3 E. H. Lieb and the referee of I.
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The wavefunction in Region I may be written
in the form of a Slater Determinant

k1T ikaz ikazy

o€ [+ 2742 aze
‘;’ eiklzn el‘kgzg eik:l:
e‘”hza e”c:t; eik:ts

It is easily checked that thig is exactly the wave-
function dictated by the rules of Sec. I. We have
gone to great trouble to assure that our wavefunction
is periodic so Iet us make use of this periodicity here.
We may simplify the calculation by setting z; = 0
and integrating over all coordinates from O to L.
This covers one entire periodic cycle of the wave-
function, and has the advantage that the integrated
requires knowledge of the wavefunction in Region I
only.
Under these conditions

o Gz O3

ikizy ikaza ikaxy thizN

[+ e € v €
¢’=

ikiza eikgza eil‘c:.:; iksx N

Let ¢} be the determinant of the minor formed
by removing the mth row and the /th column from
the preceding determinant. With this notational
convenience we may expand by mirrors to factor
out the dependence of any z;. Let us factor out zs,

Y = lz (_1)3+les‘hz,¢g.
Thus
A DI MCH R

Only the last factor depends upon z; s0 we may
perform the integration over z;,

4
I — f et(h—km)h dxs
[}

1 Phioka) L)

Tor — o) ©

This integral would, of course, be Lé,, if the ks
were separated by integral multiples of 2x/L as in
the noninteracting gas. As we have seen, our system
does not have this property, for each of the k.’s
are given by a more complicated transcendental rela-
tion. As a matter of fact, for an attractive inter-
action the transcendental relation is
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ki — k. = (g/2){ctn k3L — ctn k:3L) I = (1/geaat + [L — (1/peiek] ;.
_ g sin(k;, — k,)3L Having thus performed the z; integration we return
" 2gin k3L sin k.3 to the determinental form,
) S < 1 T (D) g
= 1Y (1 . tklb)(l —!ku;L). o ‘p lpdxa - -é Z —~ (-— ) 1[13(\"3) [+ 27248

Using this result we find + 3 aeD* (L - ia,.a,‘!‘.) .

I=(1 ¥ 1< , . . .
(1/g)eue ™ The first term in this expansion is zero, because it

=1L [ =m. represents the product of two determinants each of
The most convenient way to write this result is which have a repeated row. That is,
a; a @ Ay aof af  af o¥
1 o - 1 eihmg iksTs ikazs eikn:g e—t’hz. e—ik:z, e e—o’k)vz.
} Z E ("l)l +2‘p-‘:(‘l’3)*alatx = E ’ = 0.
P (231 22 [e£3 e ay af aF fe a¥
Thus, we now have by crossing out rows 3 and 4 and columns m and 1
o P, 1, in the original determinant,
_[o V'Y dz, = zm: Va(¥)*\ L — g ) This process continues until all of the rows greater

than 3 and all of the columns but two have been
crossed out. This leaves only 2 X 2 determinants
to be evaluated. Let ¢;; be one of these 2 X 2
determinants. Of course

which is very similar to the result we would have
obtained had the ks been separated by integral
multiples of 1(2x). The only difference is that the

effective normalization of 7 is [L — (1/g)a.a*]
instead of L*- J— ,¢,m an Leersinf a5 o
Now, as we integrate on z,, we may repeat this i RN ghine gikine

process independently on each of the N determinental
mirrors appearing in the above sum. The argument In terms of these 2 X 2’s
is exactly the same for each of these terms and the
result is o) = Z>,2: ; ,;,. §

foL fo” VY doy dzo = 3 30 ¥R X [H (L - %“ﬁ“')]“’"“""’

s34, 4

b4 (L — “‘ozma,’ﬁ)(L - —aza;) ) .
g g Let us convert the product into an unrestricted
where ¥75'; is the determinant of the mirror formed product and rewrite the expression

wo) = [Tz -taw) | 25 S2g e T e

g=1 m I¥m ns‘l >
m

Now all of the sums but < and j are just enumerating the ways to cross off (N — 2) columns such that
the ith and jth columns remain, and since ¢,; = 0 we may write the final result

e = [ 11 (2~ o) Jor = 213 3 % r e = oot

- 8=1

This is the exact expansion for the pair-correlation function only in the large L limit, thus we may
function. It may be shown that this function also approximate the factors in the denominator by L,
is periodic with period L. We wish to calculate this since
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(1/g)ete, < 4/9
and hence is negligible with respect to L.
Aside from irrelevant normalization factors, we
have

p(@) ~ Z > ate, + ate; — aatel iR
o

—{(kj—ki
—_ a’afe kg l)zx,

which is exactly the expression used to calculate the
pair correlation in I,

There is one additional complication which arises
in the attractive case. In the preceding derivation
we have assumed that all of the ks are real. As we
have shown previously, the attractive ground state
has two complex k’s, which are complex conjugates
of one another. The complication comes from the
integral over the coordinates. If we allow for complex
¥’s the integral is written

L
S Chi~Emt
I____.f eifikm Yz dx3.
]

By exactly the same line of reasoning as before

oy Oy [+ £

ikyza ikazy thaxa

gty = [° e e

ikizs iksts ikszs

e [ [

This product may be expanded and integrated
in exactly the same way. The only change in the
result is to change «* into &; and to change the
definition of the residual 2 X 2 determinants. If
we let

- o 2]

‘P‘i - .z, ik 4
gok;sg es izs
e—ik.‘z. e-—ik,‘z,

Gij = ’

the final result is

)

gm}

1 1 o
% Z Z [L - (1/g)esa] (L — (1/g)er;é;] Piibii-

Now let us calculate this pair correlation function
in the large L limit. According to the wavefunction
rules and with our usual designation of k’s we have

a=(1—e")=1—-¢?=g=1

in the large L limit,
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I = (1/g)aia?, ky # k%,
= L, kl = k:.

If we let k, and k, be the complex %'s and k, through
Ey be real, we can say

I = (1/g)aia* except where [ = 1, m = 2,

m=21=1
= [,

Formally the complication is easily handled if
we interchange the first two rows and the first two
columns of the Slater Determinant for y* This,
of course, does not change ¢* at all. We now define

in the excepted cases.

&;=a’§, ‘i=1,
= a¥, T =2,
= a¥, 1> 3.

Making use of the fact that &k, = %%, we can now
write ¢*y¥ in the form

ay e-*ikg:u e"!’k;t: e—ik;zg
tkyz ~ - ~
e oA a3
e—‘ikle e—(k:ts e—ik;z;

1 - L
a = (1 - e'k:l:) =1 e*}(ab) =@ = _eha )

in the large L limit.
Thus the factor

L — (1/9)ady = L — (1/g)axds =2 (1/g)et*?
in the large L limit.

As before, we may neglect (1/¢)e,&, in comparison
with L in the demoninator of the expression inside
the sum, provided &, is real.

Now we will compute the actual form of the
pair-correlation funetion in the ground state. Let
us neglect the normalization factors which multiply
p and pick a convenient normalization later. We
find four different kinds of terms in the summation.

(1) 1=1,j=2 and j=1,7=2,

i 1 _e‘}(nL) e}(a:) e-\}(nz)
FI — g2e igL
e—%(g:) ei(v:) Me}(qlf) 1
= g2e-az

provided z < L.
@ i=1j238ji=1123,
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_ 1 ;|| €~ e
F, = _Q_ el i
2 Z L —}(ax) eik;z __e%(ylo} a*
— % Z |k§z(eik;z - aj@—-}(px\)
i
-i(az) .
J— % g L ai —ikijz
i
providedz < L N > 1.
@ ©=23j238i=2123,
= E —Qe“itob) —gTHeD) g g ) gk
i 4 oz eik;z 1 a;!,
Fs — %g_ — ge-'}(az) Ea*;eih:
provided z < L, N >> 1.
@ i>3,j> 3
Z Z a; e—‘ik:‘x e-»ik;x
esk,z eik;z (X? a;f
2N
L2 a1‘a¢ 42 ]Z a; 6—:1:,: 2

1

F, = -ITz“ E aelf + 1‘5 IZ ae )R
Now the pair correlation funetion is proportional to
PaFl + F, + F, + %Fp
« 2N,

L” - }-ng 2 ata; + g — %e‘*‘"’

X (Z ad™ + 5 ™) + 1y | 5 e P

2N
P 2}’-2 E a‘lal

+

2

( ~§toz) __ 21, Z o e—:k.z) .

We now convert the sums to integrals, using the
spectral law

S aar =4 Y sin’k,iL,

but

]

ctn k3L = —2k,/g

thus
1
of = et
Za,a, 4.21_*_4]03/02

In calculating this sum very little error will be
introduced if we let k, = 2sw/L. Thus, converting
to an integral

e
Za,a‘— Lf 1
27

2 - 2L
e 1+ 4/ T

ta,n‘l 2ke/g.

Now we take
Z aae—ik,z — 21: z eik.%L Sin k,%Le‘k.:,

B. MCGUIRE

from the spectral law
. 6—- ikez
=2% 25Ty
If z <« I, we may replace k, by 2sw/L, and convert

the sum to an integral. We obtain
2kp/9  ~i9zu/2

ke 1gL e
e o Mo - dy.
Z @l 27 ~2kr/y Y + 1 4

Putting these back into our expression for the
unnormalized pair-correlation function, we obtain

ZN, 2N,
. 2kF/0  ~k($ozv) 2
2 —gaf2 — 'L f € d
+ 71 27" 2k8/0 Y + ? y

If we now normalize so that the background
density is unity, we have

p=1+ [gwr / 2kp(1 - }rtan”‘ 2kp/g)]Q*(x)Q(x),

where

2kF/ 0 e-—inz/‘i’v

Q(x) — 6—%(0::) - er dy,

sy Y+ 2T
or, alternatively

Q@) = 1 f ;/” ysin 1 l(g:c;/) j—*lcos i(gzy) dy.

In two limits of interest:

6)) 2k > 1 (Btrong interactions, low density).
P

- 2ky sin kez
_ ~hem _ 2Ke F
Qx) = ¢ .
o I (e _ %’@Sﬂﬁ)’
p(z) —1+2kF (e gr  kgx /]’
(2) §7{— «'1 (Weak interaction, high density).
¥
1 (“sinz, 1.,
Q) = il M dz = WS'&(’CF:U)
= % — %si(kFx)
plr) =1+ 5~ [sz(er)]

This result is an analytic continuation in the
coupling constant g of the repulsive result, therefore
perturbation theory properly predicts this result.
Figure 3 is a plot of this pair-correlation function
for ky = 1 with the strength ¢ as a parameter.

VI. STATES WITH NO PAIR PRESENT

In addition to the states we have discussed in
the previous sections, there is another class of
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T I ] I
116 -

plO)1=31.170°
114 —

p(0}=3,356"

12+

[N1e) o

108 |~

1.06 [~
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F
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Q

. 3. Pair-correlation deviation function for the ground
state.

exited states, namely those which have no bound
pair present. The energy of these states may be

- _kelg g g_”( -
E=EN4+1) - [%F—l—tan 2kF+4k§ tan

The connection between ¢ and & for small ¢ is

K_%E __2%[/0-1 —_
=T %= ctn”™ (sar — ¢)

— ctn”! (sar + ¢)].

Again this sum has been worked out in Sec. IV,

gL -1_9_]
gc[2 ﬂ_tan TR

Thus, for small k,

K=

E=EN + 1)
k_i[_g_ Ny _gi< g z)]
il [ L T A T S

D I __gﬂi_]
{k [2 B ke T Tk g/dkl

1D S Y

X 4x [5 - ;ta,n m} }

The &k = 0 state is the most energetic states of
this class, because the energy decreases as k in-
creases. This can be seen from Fig. 1 where it is
easy to see that as c is increased or decreased from
zero the 2’s are pinched together instead of being
spread apart. For g small, the energy shift is linear
in g, and hence the effect of breaking a pair in the
kE = O state is about kg, or the energy required
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calculated from the spectral law assuming that all
of the z,’s are real.

The line of reasoning is the same as has been
used throughout this paper, except that we must
now include N real 2’s. This leads to

s=1:

s=1+-.

st — etn”! (sar — ¢),

—sr + ctn”! (sar + ¢),

2,

N,
N.

[ T

2, =

The energy is
N/2

2 4N/2 4
E =z§ Ezf =E§ Zszwz'—Z§ ;_IST

ge=]
X [etn™ (sar — ¢) + etn™ (sar + ¢)] + O(Zl)
The first term is the energy of a Fermi gas with

N + 1 particles. We have already worked out the
second term in Secs. IT and IV. The result is

9/2ky ]

2 2
9 _®yy_gc T _ -1 g .
ks 2)] ir [2 B o T 1T (74

to move two particles to the top of the Fermi sea.
The different particle, however, still is most likely
to be near the middle of the Fermi sea.

If g is very large the energy required to break
the pair in the k¥ = 0 state tends to 1g°, or just
the binding energy of the bound state.

If we wish to break the pair in some other state
of total momentum % we see that the occupation
probability for the different particle maximizes at
—Fk. It is possible to show that the states with a
bound pair present, and those with the bound pair
broken come within order g of one another as k
approaches kr. If one breaks the pair and keeps
k = kg it is necessary to send the different particle
all the way to —ky. This is reminiscent of the BCS
wavefunction in the theory of superconductivity.

VII. PAIR CORRELATIONS IN THE
¢BROKEN PAIR” STATES

Since all of the ks are real, the pair correlation
function is

pe % Za‘a? _ % Eaie—ikiz

for x < L N > 1. We put this into normalized
form, and use the previous calculations of the sums
and obtain

2

gR(z)E*(x)

p=1- 8k tan™" 2kz/g
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Density Of Spin Up Particles {10~ Background!

Distance From Spin Down Parlicle In Units xf'l

F1e. 4. Pair-correlation function for the “broken pair” K = ¢
state.

where

2kp/y 3 (dgxw)

[
R(z) = »/;m/c ¥+

dy = 2ri(Q(x) — 1),

This pair-correlation function is plotted in Fig. 4
with kz = 1 and ¢ as a parameter.

The small-g behavior of this function is interesting,.
For small g we obtain

pz) =1 — (gL/N)[e™ + si(kea)],

a function which is very close to unity as g becomes
small, but whose departure from unity extends over
an enormous range. Define the function f as

f(z) = o) — 1.

We now claim that f(z) tends to zero as g tend fo
zero, but the integral of f(z) is independent of g.
Thus, in this state, a very tiny pair correlation
extends over a huge distance.

In the other extreme, when g/kr 3> 1, the pair-
correlation funetion becomes

p(z) = 1 — (sin kea/ksz)?,

which is the same result one obtains for the strongly

J. B. MCGUIRE

interacting repulsive case. This is just a manifesta-
tion of the fact that an infinite attractive delta-
function well is as impenetrable as an infinite repul-
sive delta~-function well, and this answer would have
been anticipated from the work of Giraudeau.*

For intermediate values of the coupling constant
the pair-correlation function tends to “pile up”
probability in the immediate vicinity of the different
particle, but the maximum value of this enbanced
region is always below background. One striking
effect of removing the bound pair ig that the pair-
correlation function switches from being everywhere
greater than background to being everywhere less
than background.

vl CONCLUSIONS

To a point, the results for the attractive case
bear a great resemblance to those for the repulsive
case. The ground-state energy shift and the effective
mass of the low-lying excited states and the pair-
correlation function are the same functions of the
strength that they were for the repulsive case. As
one would expect, the energy shift is negative so
that the energy of the system is less than the energy
of a Fermi gas of N — 1 particles.

The attractive potential also gives rise to a class
of excited states which have no analog in the repul-
sive case. These are the “broken pair” stafes which
have all real ¥’s and no bound state is present.
These states have an energy which is greater than
the energy of a Fermi gas of N — 1 particles, and
are characterized by a negative effective mass. These
states are separated from the states with a pair
present by an energy if the order of the binding
energy when the total momentum is nearly equal
to ky. When no bound pair is present these states
exhibit a long-range tail in the pair-correlation
function.

Finally, it should be emphasized that the ground
state of a system of N spin-I fermions would have
1N spin up and iN spin down.’ It is hoped that
these two papers will provide a first step toward
the solution of this important problem.
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The complex degree of coherence v(ri, 13, {1 — f) of a stationary optical field is defined as the
normalized cross-correlation function (|| < 1) of the light disturbances at two space-time points
(13, 8), (12, t3), the disturbances being represented by means of Gabor’s analytic signals.

In the present paper the general form of v is examined under the condition that [v] takes on the
extreme value unity for all possible time differences » = ¢ — £y (— < 7 < =). Several cases are
distinguished, depending on whether this condition is satisfied for some points or for all points in
some fixed domain of space. It is pointed out, that the previously published derivations of the rele-
vant theorems contain serious errors. The methods employed in the present paper make use of the
property of nonnegative definiteness which the complex degree of coherence is shown to obey. The
results have a bearing on the important but as yet unsolved “phase problem’’ of optical coherence
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1966

theory.

1. INTRODUCTION

BASIC quantity used in the analysis of a

large number of coherence phenomena asso-
ciated with stationary optical fields is the complex
degree of coherence’

7(r17 rZ)T) = I‘(rl) Iy, T)/{r(rl: Iy, O)P(r2) Iz, 0)}%
(1.1)

where T is the mutual coherence function
T(ty, 12, 7) = (V(ry, t + DVHre, 8).  (1.2)

In (1.2), V{r, ¢) is a complex scalar wavefunction,
r; (j = 1, 2) are position vectors of two points in
the wave field, ¢ represents the time and angular
brackets the time average. ¥ is an analytic signal’'?
with respect to the variable 7, i.e., it has Fourier
integral representations which contains only non-
negative frequency components,

'Y(rl) Tg, T) = j; w(rl, I3, 1') 6—2‘”" dv. (13)

If one assumes that v is square integrable, then
this result implies, according to a well known
theorem® that v, considered as a function of complex
7, is the boundary value on the real r-axis of a
function which is analytic and regular in the lower

1 Research supported by the Air Force Cambridge Re-
search Laboratories and by the U. 8. Atomic Energy Com-
mission.

1 M. Born and E. Wolf, Principles of Optics, (Pergamon
Press, Oxford, England and Macmillan Co., New York; 1964),
2nd Ed., Chapter X.

2 D, Gabor, J. Inst. Elec. Engrs. 93, Pt. III, 429 (1946).

3 E. C. Titchmarsh, Introduction to the Theory of Fourier
Integrals, (Clarendon Press, Oxford, England, 1948), 2nd Ed.,

p- 128.

half of the complex r-plane. The normalization of ¥
ensures that'

0 _<_. I'Y(rl)rZ) T)[ S 1 (14)

The extreme cases vy = 0 and |y| = 1 are tradi-
tionally associated with “complete incoherence” and
“complete coherence,” respectively.

Parrent* (see also Refs. 5 and 6) has considered
the problem of determining the general form of v
in the extreme case when [y(r,, r;, 7)| = 1 for all
7 values (— » < 7 < ), and for all pairs of points
r; and r.. He concluded that in this case y must
necessarily be strictly periodic in 7, and be of the
form

(1, I, 7) = exp {fa(r;) — afr)) — 2mwe7]}.  (1.5)

Here «(r) is a real function of r and », is a positive
constant. From (1.1) it follows that the mutual
coherence function is then expressible in the form

I(ry, 12, 7) = U(r,) U*(r) e_hmrr (1.6)
where
U(r) = {T(z, , 0)}} exp [ia(r)]

is a function of r only.

In the present paper we are returning to the
problem treated by Parrent and consider also some
related problems for two reasons. First, because as
will be shown below, while the conclusions ex-
pressed by Egs. (1.5) and (1.6) are correct, Par-

¢ G. B. Parrent, Jr., Opt. Acta 6, 285 (1959).

8 G. B. Parrent, Jr., J. Opt. Soc. Am. 49, 787 (1959).

¢ M. J. Beran and G. B. Parrent, Jr., Theory of Partial

Coherence (Prentice—Hall, Inc., Englewood Cliffs, New Jersey,
1964), p. 49.
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rent’s proof contains serious errors. Secondiy, be-
cause this problem turns out to have a bearing on
the important but as yet unsolved phase problem
of coherence theory.” The phase problem is essent-
ially the problem of finding conditions under which
the knowledge of the modulus of v{r,, 15, 7) for all
real r-values (but fixed r; and r,) allows a unique
determination of its phase. It may be shown that
{cf. Refs. 7, 8) in view of the analytic behavior
of v already mentioned, the phase ¢ of ¥ must
necessarily be expressible in the form®

$(r) = —2mor + §(r) + 2670, (1.7
where
a=Zp [l 18)

and ¢'”(7) is the argument of the Blaschke factor

exp [ip"] = [r — +")/[r — +7*. (19)

In (1.7), v, is a real, nonnegative quantity which
is independent of r and the " are zeros in the
analytic continuation of y(r) in the lower half of
the complex r-plane.

It is seen from Eq. (1.7) that, apart from a linear
additive term in 7, the phase ¢(r) may in general
be determined from the knowledge of the modulus
of y(r) on the real r-axis and the locations of the
zeros in the analytic continuation of +y(r) in the
lower half of the complex rplane. However, the
locations of the zeros cannot be quite arbitrary,
since v may be shown to obey the following condition
of “nonnegative definiteness”*’:

7 E. Wolf, Proc. Phys. Soc. (London) 80, 1269 (1962).

7. S. Toll, Phys. Rev. 104, 1760 (1956). ;

*In Egs. (1.7), (1.8), {1.9) we suppress the explicit de-
pendence of v and ¢ on 1; and 1.

10 In fact v satisfies the stronger nonnegative definiteness
condition

f P ri)y(@ ) Ty 1y~ 7)f(Th, va) Ay ditndrydey 2 0,

for all sufficiently well-behaved functions f(r, 7). This con-
dition may be shown to be equivalent to the following non-
}}egaﬁng}-éeﬁmteness eondition in the frequency demain, valid
or each »:

f FHE ot s oy 9)F(ey) d'r; dry > 0.

erre F{r) is any arbitrary, sufficiently well behaved funetion
of r. v

This equivalence is essentially a generalization of a theo-
rem of Bochner (8. Bochner, Lectures on Fourier Integrals
{Princeton University Press, Princeton, New Jersey, 1958),
p. 326] well known in the theory of characteristic functions.
{See for example E. Lukacs, Characteristic Functions {Charles
Griffin and Company, Ltd., London, 1960), p. 62.]
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L3 n
2 E’Y(rnfk: TP

j=l k=l

oy = 0. (1.10)
Here n is any positive integer greater than or equal
to unity, 1y, Iy, - - I, are arbitrary position vectors
of points in the region of space for which v is de-
fined, 7,, 74, -+ , T, are arbifrary real constants,
and a,, @, - - , @, are arbitrary complex constants.
The formula (1.10), which is basic for the present
investigation is established in Sec. 2 below,

It has been conjectured’ that for many cases of
physical interest the analytic continuation of vy will,
in fact, have no zeros at all in the lower half of
the complex r-plane, at least in the case when
r; = 1,. From Eq. (1.7) it follows that in such cases
the modulus of v(r) on the real r-axis specifies the
phase uniquely up to an additive linear term in 7,
and this in turn implies that in such cases the knowl-
edge of |y| for all real r values specifies the spectral
profile of the light uniguely. This conjecture is
supported by explicit calculations relating to black-
body radiation."

Now the result of Parrent, expressed by Eq. (1.5)
above, relating to the limiting case [y(+)] = 1
implies that in this case there are also no zeros in
the analytic continuation of ¥{r) in the lower half
of the complex rplane. It is evidently of importance,
for a clearer understanding of the phase problem,
to find what is the reason for the absence of the
zeros in this particular case. The proof of (1.5)
given by Parrent* is based on two facts:

(1) That the most general analytic signal f(r)
whose modulus is unity on the whole real r-axis,
must necessarily be of the form

fr} = exp {#(8 + ar}} ﬁ a (é—"f—:—j_), 1.1y

wol Gn NGy

where « and 8 are real constants and a, are complex
constants such that « and the imaginary part of
a, are of the same sign; [both negative or positive
according as f(r) is the boundary value on the real
r axis of a function which is analytic and regular
in the lower or upper half of the complex r-plane];
and that

{2} if f{r) is the coherence function v{r, r, 7);
then for all real r~values

®/{f(n)} = a{f(=n},

where ® denotes the real part.
The representation (1.11) was derived by Edwards

(1.12)

1Y, Kano and BE. Wolf, Proc. Phys. Soc. (London) 80,
1273 {(1962).
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and Parrent'® and is essentially equivalent to a
representation of the S-matrix found by van Kam-
pen.” The result (1.12) is an immediate consequence
of the defining Eqs. (1.1} and (1.2). Parrent as-
serted® and claimed to have proved that the condi-
tion (1.12) implies that all the product terms in
(1.11) are absent or, what amounts to the same
thing, that the analytic continuation of f() has
no zeros at all in the appropriate half of the com-
plex r-plane. However, that the condition (1.12)
cannot, in fact, be sufficient for absence of the
zeros is evident by considering the function™

r—a r-+a*

fr) = T Tra exp (~~2miv,7), (1.13)

where », 18 a positive constant and ¢ is a constant
with a negative imaginary part. This function is
an analytic signal, is unimodular on the real r-axis
and obeys the condition (1.12). It is seen to contain
two zeros in the lower half of the complex rplane
(where f(r) is analytic and regular), namely at the
points r = g and r = —a*

In the present paper we will show that the real
reason for the absence of the zeros in the case where
ly{(r)l = 1 ig the fact that v is a nonnegative defi-
nite function, in the sense of Eq. (1.10). In Sec. 2
we derive this nonnegative definiteness condition.
In Sec. 3 we consider the case where the condition
lv(r, T, 7)| = 1 holds for all real values of  and
for a fixed point r. In Bec. 4 we consider first the
case where the condition |y(r,, 1, 7}] = 1 holds
for all real values of = and for a particular pair
of values of ry and r,. The case when the condition
holds for all values of r, and r; in some domain of
space is also considered in Sec. 4.

2. NONNEGATIVE DEFINITENESS CONDITIONS
SATISFIED BY ~(r, 1, 7)

In this section we derive the nonnegative de-
finiteness condition satisfied by v(ry, 1, 7) and
discuss some of its consequences which will be
needed in the later parts of this paper.

Let

( 915*98). F. Edwards and G. B. Parrent, Jr,, Opt. Acta 6, 367
1 5
12 N, G. van Kampen, Phys. Rev. 89, 1072 (1953).

14 There are 8 number of algebraie errors in Parrent’s prooft.
In addition, the contribution from a large semicircle, to a
font?iur integral leading to his Eq. (A9) 18 incorrectly neg-
ected.

The theorem has also been discussed in a recent book by
Beran and Parrent (Ref. 6). The derivation makes use of
another theorem (their Proposition B, p. 49) which is in-
correct.
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Fi) = 38,V t+ 7,

i=1

@2.1)

where V(r, {) is the complex scalar wavefunction
(represented in terms of an analytic signal) of a
stationary optical field; r;, r; are arbitrary values
of the parameters r and r, respectively; B; are
arbitrary complex parameters and n is any integer
greater than or equal to unity. We then have

0 < FOF*D)
= 3 S BV t+ ) VT, tF )

=1 kwl

ki ”

> 20 BBAT(r, 1y 7 — 7).

§wl k=l
Since according to (1.1),

(& 1y 7) = Tt 14, /{0, 1y, I, 1y, 0)?;
23)

2.2)

i

(2.2) implies that

" ”
Z E Yt Tay 75 — TR0 2> 0

i=1 k=1

[e; = [T(r; r; 0)}!8;]. Since the parameters 8
in (2.2) are arbitrary, so are the parameters o
in (2.4).

For n = 1, (2.4) expresses the obvious condition
that v(r, r, 0) > 0. For n = 2, it is equivalent
to the statement that, in addition, one has for all
values of 1y, 13, and 7

(2.4)

v(t1, 1y, 0)y(rs, 12, 0) — vty 12, 7) {2 >0, (2.5)
where the “Hermiticity condition”
Y&, Ty 7y — 1) = Y@, Ty T — i), (2.8)

which follows from the defining Egs. (1.1) and (1.2)
for v, has been used. This result is also obvious, since

'Y(rly rl) {)) = 'Y(ri.’x r2) 0) = 1 (2'78‘)

and
lv(ry, r2y 1) £ 1. (2.7b)
The consequence of (2.4) for the case n = 3 is,

however, not quite so obvious and is of immediate
interest for our problem. When n = 3, the condition
(2.4) implies that the 3 X 8 Hermitian matrix
1 Y(£y, T2y 7o — 72) Y(T1, T3, T~ 7T2)
¥(te, Ty, 72— 71) 1 v(X2, T3, T2 ~ 73)

Y(ts, Ty, 75— 1) ¥(Ts, Loy T2 — 72 1
©2.8)

is nonnegative for all real values of 7,, 72, 73 and
for all sets of any three points r;, 1,, 13 in the space
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domain D for which v is defined. This condition
implies, in particular, that the determinant of the
matrix (2.8) is nonnegative, i.e., that

1 v 7

Yas| = 0, (2.9

Y 1

Yai Yz 1

where, for the sake of convenience, we have used
the abbreviation

(2.10)

On evaluating the determinant (2.9) and making
use of the fact that v;;, = X, we obtain the relation

(1 e I’szlz)(l - |’Yal|2) - ]'Yaz - 712731]2 > 0. (2-11)

Eq. (2.11), when written in full, expresses the condi-
tion that

Yir = ¥(j, Ty T3 — T4).

h’(rm Ty, 73— 72) — ¥(y, T3y 71 — 72)¥(Ts, 1, 73 — 7’1)]2

S (1 - |7(r17 Tyy 71— 7'2) |2)(1 - "Y(ra: Ty, 73— 7'1) I2);
2.12)

for all real values of 7, 75, 75 and for all sets of
any three points r,, 1,, r; in the domain D.

3. THE MOST GENERAL UNIMODULAR DEGREE
OF SELF COHERENCE (R, R, 7)

Suppose that |[y(R, R, 7)| = 1 for all real values
of r (—o» < 7 < =) and for some fixed point
r = R. We will show that y(R, R, r) must then
necessarily be of the form

3.1)

where », is a positive constant. In the process of
the proof, it will also be seen that the complex
degree of coherence v(r, R, 7) is also strictly periodic
in 7, i.e,, that it has the form

'Y(R1 R; 7') = exp (_27‘1.1’0'7'):

3.2

Here r is the position vector of an arbitrary point
In the space domain D for which «(r, R, 7) is defined
and R is, as before, the position vector of the point
for which y(R, R, 7) is unimodular for all real
7-values.

Since |¥(R, R, 7)] = 1 for all real values of 7,
we may write

YR, R, r) = exp [i¢()], 3.3)

where ¢ is a real function of ». Moreover, from the
defining Egs. (1.1) and (1.2), it follows that

o(—7) = —¢(7) + 2mm,

where m is any integer.

¥(t, R, 7) = ¥(r, R, 0) exp (—2miv,r).

(r real),

3.4
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Now as shown in the previous section, v satisfies
the inequality (2.12), viz.

[’Y(l'z, rz, Tz — T2) —¥(T1, T2y 71— Tz)‘Y(ra, I, 13— 71)]2
<[1- h’(rn Ty, 71— 72) [2][1 — |y(ts, 13, 75 — 71) '2]
(3.5)

for all real 7,, 7, 7, and for all triads of points
I, I, I3 in the domain D for which vy is defined.
In particular if we set r, = 1, = R and r; = 1,
this condition implies that

) — YR, R, 7y — m)v(r, R, 75 — ‘1'1)]2

<0. (3.6)

Here we have made use of the fact that [y(R, R, 7)[ =1
for all real values of r.

Since the left-hand side of (3.6) is always non-

negative, only the equality sign can hold, and we
obtain the relation

[7(r’ R) T3 —

= Tl) ’
3.7

which must be valid for all real values of 7, 7,, 75
and for any arbitrary point r [but with fixed R
for which |[v(R, R, 7) | = 1].

If weset ry, = 73 = 7, + 7 in (3.7), it follows that

¥, R, 1) = ‘Y(R) R, T)’Y(l‘, R, 0). (38)

Next let us set r = R in (3.7) and use also Egs.
(3.3) and (3.4). We then obtain the following func-
tional equation for ¢:

¢(r1 — 72) + @12 — 73) + (75 — 71) = 2mx, (3.9)

where m is an arbitrary integer. To solve the func-
tional Eq. (3.9), we first differentiate (3.9) with
respect to 7; and then set 7, = 73 = 7, + 7. We
then obtain

¥, R, 73 — 1) = YR, R, p — )¥(t, R, 73

(3.10)

where prime denotes differentiation with respect to
the parameter v and v, = —(1/27)¢’(0) is a con-
stant. Integration of (3.10) gives

&(r) = —2mwer + 8, (3.11)
where 8 is a constant, and Eq. (3.3) now gives
YR, R, ™) = exp [18 — 2miveT]. (3.12)

However, since v(R, R, 0) = 1, 8 must be an integral
multiple of 2, and so we finally obtain

d’,(‘r) = —2nv,,

¥R, R, 7) = exp (—2xivyr). (3.13)

Now the normalized power spectrum w(R, R, »)
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is, according to (1.3), the Fourier transform of 4,
so that when v is given by (3.13),
wR, R, ) = 8 — »), (.19

where § denotes the Dirac delta function. Since w
can be nonzero only for the positive values of »,
the constant », in (3.13) and (3.14) must be positive.

On substitution from (3.13) in (3.8), we obtain
the relation

¥{r, R, 7) = 4(r, R, 0) exp (—2wiv,7). (3.15a)

From (3.15a) and (2.6) it follows that one also
has the relation

(3.15b)

We may summarize the results which we have
now established in the following:

7(R) I, T) = 1R, 1, O) €xXp (-'27”."07')'

Theorem 1:

If for some point R and for all real values of
7 (—® < 7 < o) the complex degree of self co-
herence v(R, R, ) is unimodular, then v(R, R, 7)
is necessarily of the form

(3.16)

where », is a positive constant.’® Moreover, if r is
any other point in the region D for which the com-
plex degree of coherence is defined, then v(r, R, 7)
is also necessarily periodic in » and is of the form

YR,R, 7) = exp (_27"7:"07')1

¥, R, 7) = «(r, R, 0) exp (—2xiy,7), (317)
and similarly,
YR, 1, ) = ¥R, 1, 0) exp (—2riv,r). (3.18)

4. THE MOST GENERAL UNIMODULAR DEGREE
OF COHERENCE ~(R, R, 7)

Suppose that |y(r,, £, 7)] = 1 for all real values
of 7 (—o < r < =) and for some fixed space
points r, = R,, r, = R, in some space domain D
where v is defined. We will show that in this case
v(R;, Ry, 7) is also strictly periodic in 7. In the
process of the proof, it will be seen that both
v(Ry;, Ry, 7) and v(R,, Ry, 7) must necessarily be
also unimodular for all real values of 7.

We begin in & similar way as before. We set
rn =R, r, =Ryand r; = rin (2.12) and use the
fact that [y(R;, Rs;, )] = 1. We then obtain the
inequality

15 According to a theorem on characteristic functions
(ef. p. 25, Corol. 2 in the book by E. Lukacs, quoted in Ref,
10) the condition |y(R, B, )] = 1 for all r may be replaced
by the weaker condition |y(R, R, 7)| = 1 for any two incom-~
mensurable real values 7, and 7 of 7.
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|~y(r, R, "'s"‘Tz)—‘Y(Ru Ry, 1i—m)v(1, Ry, Ts"‘fl)l’

<0, &1
which implies that the equality
¥, Ry, 73 — 12)
= v(Ry, Ry, 71 — To)¥(t, Ry, 73 — 1) 4.2

holds for all real values of r,, 75, 75 and for any r
in the domain D. On equating the moduli of both
sides of (4.2), setting r = R, and again using the
fact that |[y(R,, R,, 7)] = 1, we obtain the relation

i’Y(RI:RU T)‘ =1 (4.3)

valid for all real values of 7, where r = 7, — 7.
In a similar way it can be seen that ¥(Ry, R,, 7)
is also unimodular for all real values of 7.

Having proved that the complex degree of self
coherence v(R,, R,, 7) is unimodular, we may now
use the results of Theorem 1 established in Sec. 3.
We then have the result that for all real »

’Y(Rl) R2; T) == 7(Rn Rz: 0) exp (_27”:”07)1 (4°4)

where », is a positive constant. However, since
¥Ry, R, 0) is itself unimodular, it follows that

v(R1, Ry, 7) = exp [i8 — 2miv,r],

where 8 is a real constant.
Finally setting v, = 7. = r, — 7 in (4.2), we
obtain the following result:

‘Y(r, Rz, T) = 'Y(Rl, Rg, 0)7(1‘, Rl) 7')- (4'6)

We can summarize the results which we just
obtained in the following.

Theorem 2:

If for some pair of valuesr, = R, and r, = R,
and for all real values of 7 (—o < 7 < =), the
complex degree of coherence y(r,, r; ) is uni-
modular, then ¥(R;, R,, 7) is necessarily periodic
in 7. More precisely, it must have the form

(4.5)

T(Rl; R,, "') = exp (1:[3 - 27{?:?07)’ (4'7)

where 8 and », are real constants and », > 0. More-
over, the following relations also hold for all real
values of 7:

YRi1, Ry, 7) = ¥(Ry, Ry, 7) = exp (—2mwivor),
¥(r, Rs, 7) = v(Ry, Ry, Ov(r, Ry, ™,

where r is an arbitrary point in the space domain D
in which v is defined.

(4.8)
4.9

Lastly let us suppose that |y(t,, 15 7)| = 1 for
all real 7 values (— o < 7 < o), and that this
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condition is satisfied not only for a particular pair
of points r, and r;, but for all pairs of points in
some domain D of space. We will show that under
these circumstances the parameter g in (4.7) must
have the form a(r;) — «o(r,), where «(r) is a real
function of r, while », remains a positive constant.
We again begin with Eq. (2.12) which implies
in particular, that under the conditions just stated,
V{Ts, T2, 0) = 4(ry, 13, O)v(1s, 13, 0),  (4.10)
where 1,, 1y, r; are any three points in the domain D.
Writing
¥(xi, T, 0) = exp {ig(r;, 1, 0},
(1, k =1,2,8;¢ real), (4.11)

we obtain

é(ry, 13, 0) -+ ¢(1s, Iy, O) = ¢(rs, Iz, 0) + 2mr, (‘4‘12)

where m is an arbitrary integer. Setting r; = 0 in
Eq. (4.12) (which is always permissible by suitable
choice of the origin in D), we obtain

#(rs, 11, 0) = alrs) — a(r)) + 2mm,

where a(t) = ¢(r, 0, 0) is a function of r only.
Hence (4.11) gives

(4.13)

MEHTA, WOLF AND BALACHANDRAN

(1, T, 0) = exp {ilalr) — o]}, (414
and if (4.7) is also used, we obtain the relation
VI, 12, 7) = exp {ifa(n) — alt) — 2mr]]. (4.15)

We may summarize the result, which we just
obtained, in the following:

Theorem 3:

If for all values of r, and 1, in a domain D of
space and for all real r values (—o < r < ®),
the complex degree of coherence ¥(r,, r, ) is
unimodular, then it must necessarily be of the form

v(r:, 12, 7y = exp {ila(r) — ofty) — 2m7]}, (4.16)

where «(r) is a real function of r and », is a positive
constant.

‘We note that when the conditions of this theerem
are satisfied, (4.16) and (1.1) imply that the mutual
coherence function has the “factorized”, time-peri-
odie form

(1, 12, 7) = Ulr)UXr,) exp (—2river), 4.17
where
U@ = (T, r, 0} =™ = (V(r, TV, ) =,

(4.18)
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In certain problems in solid-state physics, the radial functions gi(r) in the expansion x(r) =
2. iw0® gi(r)K 6, ¢), where x(r) is a known function and the K;’s are Kubic Harmonics, are of inter~
est. This paper deals with the functions x(r) == N-1 ¥ eik r, where the sum runs over the first Bril-
louin Zone of a crystal. In particular, the functions x(r) for simple cubic and face-centered cubic
lattices are expanded into series of Kubic Harmonics and the radial functions g;{r) for several values
of 7 are found using Houston’s method, in which the expansion into series of Kubic Harmonics con-
tains only a finite number of terms with lowest y’s. go(7) is calculated using 3, 6, and 9-term expansion,
g:(r) and gs(r) using only 3 and 6-term expansion. Comparing g;(r) obtained from the formulas with
different numbers of terms it is established that for r in the region (0, 2a), where a is the lattice con-
stant, the 6-term approximation is very good. In practice, the functions g;(r) usually occur in inte-
grands, together with atomic orbitals, and the tabulated results are expected to be particularly
useful in the study of Wannier functions in the OPW scheme.

L INTRODUCTION: HOUSTON'S METHOD

UCH of the present paper is based on an ap-
proximation method introduced by Houston.!
Since this method is highly useful but does not ap-
pear to be widely appreciated today, we begin with a
sketch of the method. It was given for the first time
for determining the frequency distribution function
of cubic crystals. Afterwards it was improved in a
series of papers®™® and used extensively in the theory
of thermodynamic properties of crystals with ap-
propriate cubic symmetry.
In this theory integrals of the following type
oceur:

2% Ld
k) = fo fo Fk,, k, k) sin 0 d0de,  (L.1)

and

— o 4
I= ff F(k., k,, k.) dk. dk, dk,. (1.1)

B.z.

The integration in (1.1) is taken over the solid angle
in k-space. For the integration, the variables k., k,,
k, in the function F(k) must be substituted by the
spherical variables k, 6, ¢. The integration in (1.1")

* Supported in part by a_Grant (62-145) from the U. S,
Air Force Office of Scientific Research.

1 Present address: Institute of Physics, Polish Academy
of Science, Warsaw, Poland.
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is taken over the entire volume of Brillouin zone.
When the function F(k) is invariant under all sym-
metry operations of the complete cubic group 0,, it
results from symmetry that in order to calculate
(1.1) or (1.1") it is sufficient to know F(k) in only
1/48th of the Brillouin zone. We will be concerned
only with functions of this type.

In the theory of thermodynamic properties the
functions F(k) that occur are not in fact known in
the whole 1/48th of the Brillouin zone, but only
along some directions in this space. With functions
so meagerly determined one cannot easily find good
approximate values of I(k) and I.

In order to pass to simple one dimensional inte-
grals in (1.1) and (1.1"), the function F(k) may be
expanded into a series of Kubic Harmonics K;(8, ¢)
with the same transformation properties as F(k)":

Fk) = Z;f,-(k)Ki(G, ). (1.2)
The invariance of F(k) under all symmetry opera-
tions of cubic group means that F(k) transforms
according to irreducible representation T, of cubic
group 0,.° Kubic Harmonics K;(6, ¢) are deter-
mined for several lowest values of j.*7 They are
orthogonal and may be normalized, so they satisfy
the condition

27 *
f j K%(0, 9K (0, ¢) sin 0d6 dp = 5,;.  (1.3)
0 [+

7F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71,
612 (1947).

8 We use here the name T, for this representation. In
notation used by Von der Lage and Bethe, it is called .
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The functions f;(k) are expressed by the integrals

0 = [ [ K0, or@snodode. (19

When the function F (k) is determined only for some
directions in k-space one cannot perform the exact
integration in (1.4). But it would be very simple to
calculate I(k) and I if we could find f;(k) in any
possible way.

Houston gave a method which enables us to find
{i(k) for several lowest j without using the formula
(1.4). For the definite direction s the expansion (1.2)
can be written

Fulbar by k) = Fll, 8., 00 = 20 109K, 0.
= (1.5)

On the right-hand side of this expression we have
in fact an infinite sum over j. Houston’s idea was to
use instead of the infinite sum a finite one containing
a number of terms equal to the number of non-
equivalent directions along which the function F(k)
was actually known. If the function F (k) is known
for n nonequivalent directions, we write

n-1
F(k, 0., ¢.) = Z f{R)K (8., ¢.), s 1,2 n.

=0 (1.6)
The expressions (1.6) form a set of algebraic linear
equations with n unknown functions f;{k). Solving
this set of equations the funetions f;(k) are given as
linear combinations of F(k, 6,, ¢,). The more- direc-
tions we can use in formulas (1.6) the better an ap-
proximation for f;(k) is obtained. Near the origin,
for small %, the lines used are close together and
quite a small number of directions yields good
approximation for f;(k) in this region; but when k
increases one must use more directions in order to
get a “good” f;(k). Houston used his method to
consider functions of k-vectors in the Brillouin zone,
that is a region of relatively small k in the entire
k-space. Furthermore, a normalization factor was
included assuring better accuracy of the calculated
integral 1.°'°

A similar procedure can be applied to functions
G(z, y, ) in r-space if we are interested in values of
G(r) only in the region of small r.

In Sec. II the algebraic details of the truncated
expansion are worked out for future reference, and
in See. III the particular function Zk e*® " is studied.
In Secs. IV and V we examine some more general
funections G(r) of interest for solid state problems.
Using Houston’s method we find the radial functions
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of expansion into series of Kubic Harmonics, and
we discuss their usefulness in calculations.

II. SOLUTIONS OF THE SET OF EQUATIONS
FOR THE RADIAL EXPANSION
FUNCTIONS g¢,(r)

We consider here a function G(r) which trans-
forms according to the irreducible representation I',
of the group 0,. We take into account several direc-
tions along which G(r) is known, and for every
direction s we expand it according to formula (1.6):

n—1
G,(T) = G(T, 6., ﬂos) = 'Zo gi(T)Ki(en ﬂaa)' (2'1)
In our considerations we use nine directions which,

for cubic symmetry, are contained in an appropriate
1/48th of the total solid angle®:

A :[100] D :[210] G :[411]
B : [110] E :[211] H :[431]
C 111} F :[221] I :[433].

K,'s are taken normalized. It is well known that
K; with j = 1 does not appear for the irreducible
representation T,.°

In previous papers'*'® formulas for the function
g0(r) were given using 3, 6, 9, and 15-term expansions
in (2.1) and also for different combinations of 4
and 5 terms. We write here these formulas for go(r)
as 3, 6, and 9-term expressions:

9 (r) = (4m)}(1/35)[10G.(r) + 16G5(r) + 9G(1)],
(2.2)

9&(r) = (47)*[0.108782G,(r) + 0.070795G5(r)
+ 0.016177G(r) + 0.352674G5(r)
+ 0.287697G5(r) + 0.163888G ()],
98" (r) = (4r)*[0.056378G4(r) + 0.049527Gx(r)
— 0.055886G(r) + 0.178271G(r)
+ 0.102948G4(r) + 0.073099Gx(r)
+ 0.207116G4(r) + 0.213763G(r)
+ 0.174784G,(")].

2.2%)

(2.2’

The upper index indicates the number of directions
used in the calculation of go(r). The functions G4(r),
Gp(r), + -+, G¢(r) are determined for the directions
A, B, --- , I. If the function G(r) is given in an
analytical form, in order to get Gu(r), --- Gi(r),

9 We use here the directions given in Refs. 3 and 5. Betts

showed in his paper how these directions are situated in
1/48 of the total solid angle.
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we simply pass from the Cartesian coordinates
z, Y, z to the spherical coordinates r, 6, ¢, and sub-
sequently put into G(r, 6, ¢) the appropriate values
of 8, and ¢, for the given direction s.

In the present paper formulas were found also
for g,(r) and gs;(r)—the second and the third radial
functions in expansion (2.1). g, and g, are given as
3 and 6-term expressions:

6°0) = 40! Sy

X [35G4(r) — 8Gx(r) — 271G:()],
9s2(r) = (47)*[0.193843G4(r) — 0.129652G5(r)
— 0.075624G¢(r) + 0.247791G(r)

(2.3)

— 0.015520G(r) — 0.220839G:(r)], (2.3')
and
6°) = (n)} 5y 5 1Gu) — 46a(0) + i@l

g:2(r) = (47)*[0.081883G.4(r) — 0.211995G'5(r)
+ 0.147168G(r) — 0.088535G(r)
+ 0.066324G:(r) + 0.005155G-(r)]. (2.4")

One may notice that the sum of the numerical
coefficients for go(r) is equal to unity, and for g,(r)
and g,(r) it is equal to zero.

II. THE APPLICATION OF HOUSTON'’S
METHOD TO THE SUM OF PLANE
WAVES OVER THE BRILLOUIN ZONE

In some problems of solid state physics the follow-
ing integrals occur'’:
W = (1/N) X, f eFTeXr) dr. (3.1)
k
Here the sum over k is taken over the entire volume
of the Brillouin zone. ®(r) is a function which trans-
forms according to the irreducible representation T,

of the cubic group O,. Therefore, ®(r) may be ex-
panded into series of Kubic harmonics K;:

P(r) = Z e{NK (0, ¢). 3.2)
We shall wish to consider only functions ®(r) for
which the radial functions ¢,(r) are different from
zero for small » and are vanishing elsewhere (e.g.,
atomic wavefunctions). Since the Kubic Harmonics
are linear combinations of the spherical harmonics,
instead of (3.2) we may write

10 M. Miasek, Bull. Acad. Polon. Sci., Classe (I1I) 4, 453
(1956).
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P(r) = Z ; ein(1) Yin(0, ©)- 3.3)
@1m 18 given as an appropriate ¢;(r), where I = 24,
multiplied by a numerical factor ¢;,,, which is deter-
mined by symmetry considerations.

If we wanted to find the value of (3.1) in the
standard way, we should use (3.3) for the function
&(r) and also expand the plane wave ¢'** in a series
of Legendre polynomials with spherical Bessel fune-
tions §;(kr) as the radial functions of this expansion.
After such a substitution the following expression
for W would be obtained:

W = lE ; [; Yim(0x, 0x)Gin(k)],

where

34)

Giull) = C [ ioetuty* dr.  (3.5)
0

Here C is a numerical factor. Calculating G..(k)
and afterwards summing over k in (3.4) is extremely
laborious and ineffective. In many cases, W may be
found in a very easy way using Houston’s idea of
expanding a function of cubic symmetry in a finite
number of cubic harmonics.

Let us consider the function consisting of a sum
of plane waves ¢*'*, where the summation is taken
over all k vectors in the Brillouin zone. We define

1 iker
X(r)=ﬁ;ek .

One may usually pass here from the summation to an
integration, and instead of (3.6) we write

X(1) = (_25%3][‘/ &5 dk;

Q, is the volume of unit cell. The integral in (3.7)
can be integrated easily over the appropriate Bril-
louin zones for cubic crystals so that the function
x(r) is known in analytical form, which, as we shall
see later, may be quite a complicated function of
1. x(r) transforms according to the irreducible repre-
sentation T'; of the group O,; therefore, the considera-
tions of Secs. I and II apply to this function.

In order to find the value of W, we expand x(r)
into a series of Kubic Harmonics,

x(r) = Z 9:(n K6, o).

Then substituting (3.2) and (3.8) into (3.1), we
obtain

(3.6)

3.7

(3.8)

W=z [ et ar. (3.9
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In (3.9) the sum over j for typical solid-state prob-
lems contains only a few terms. There are in fact
two reasons for such a limitation of j. First, in
practice the function ®(r) usually involves only
terms with lowest j’s. [Eq. (3.2)]. Second, we shall
see later that the values of functions ¢;(r) get smal-
ler with increasing j especially in the region where
the ¢;(r) are determined, so that only first few terms
in (3.9) decide about the value of W. In order to find
W from (3.9) we need usually to calculate only a few
one-dimensional integrals and in order to do that
we must know the functions g;(r). It is not easy
to get g;(r) from the exact formula
2% Ld

o) = [ [ x*@K(0,sin0dsds,  (3.10)
because x(r) is a rather complicated function of 4
and ¢, but we can find without any trouble the func-
tions g¢;(r) with the lowest 7s using Houston’s
method.

In Secs. IV and V g;(r)’s with § = 0, 2, 3 are
calculated for simple cubic and face-centered cubic
lattices.

IV. THE FUNCTIONS g,(r) FOR A SUM OF
PLANE WAVES IN A SIMPLE
CUBIC LATTICE

In fact, for the simple cubic lattice one can find
from (3.10) the exact solutions for g;(r) in the form
of a power series in r/a, where a is the lattice con-
stant. The calculation of g;(r) using Houston’s
method is done here because of two reasons. The
main reason is that for this lattice we can compare
the results of Houston’s method with the exact
analytical ones. The other reason is that we can use
the analytical form only when r < a. When r is
not too large but r > a the results of Houston’s
method are more useful. These g;(r) occur in cal-
culations for CsCl-type structures.

The function x(r) for simple cubic structure is
obtained from (3.7) by integration over the Brillouin
zone which is a cube with edges of length 2x/a.
We have the following expression for x(r):

@) = (g)s sin (rz/a) sin (ry/a) sin (rz/a) @1

zyz

In order to use x(r) in formulas (2.3), (2.4), and
(2.5), it must be found for the directions A4, B, --- I.
The appropriate functions are dependent only on

the ratio @ = r/a and have the following forms:
L1 Sin
X4 = 1 3 P4 = Ta,

P4
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2.2

sc s (4]
Xs =—=%—, osi= ma/2},
(7]
sin® D¢ Y
X!Cc = 3 1} Yc = 7"6“/3 y
$c
2
so s5m [4 Cos b
XD ="__22_—1 ¢p =7"a/5*r
$p
. 3
. sin® ¢x €os ¢g
Xy = — 3", or = 7a/6},  (4.2)
(4
sin® ¢r cos® ¢
bl F
Xp = ————3 ——, eor = Ta/3,
(44
. sin 4pg sin® ¢
Xy = 2n 2P B0 @0 ec = a/18},
4o
oo _ SiN 4oy sin 3¢y sin ¢y i
Xg = 3 , om = 1a/26%,
12‘PH
s Sin 4o, (sin 3¢,)’
X = @i ©1) — 7ra/34*.

3 6S0; H er

Using these formulas we calculated g,(r) from 3, 6,
and 9-term expressions and g,(r) and gs(r) from 3
and 6-term expressions. The g;(r) are calculated in
the region 0 < r < 2z0r0 < a £ 2.

The exact solutions for g;(r) are found in the form
of power series in r/a. We write down such a solu-
tion for g,(r):

wi/) = @t o), @y
where
by = a, b, = % <—% + 201»)»
booy = (_l)iao
LU DIEI+D
2:4-..2§ 1
T3 @+ D% T35 ¥ D
= (—1)'~"(2:4 - - 2)
X L G2t Dz (2 = 2]
and
a, =1, a, = —-?% )
_ =y [ 2
YT 2 lE DA - 2)

i=1 1
+ Zl (2s+1)(2j—2s+1)(2-4- - -25){2-4- - '(21'-28)]'

g2(r) and gi(r) were also found in the form (4.3) but
the coefficients were still more complicated.
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Calculating the numerical values of several first
coefficients b; we have

gola) = (4m)}[1 — 1.6449275° + 1.028210a*

— 0.3530432° + 0.0783440° — 0.0123184™ + ---],
(4.4)

gale) = (4m)[—0.094473a* + 0.0746730°

— 0.0261250° + 0.005511a® — ---]. (44"

We do not write the expression for gs(e) but point
out that its power series starts with an o° term.
From the series expansion we notice that

gl = 0)/(4m)} =1,

and the g; with j # O behaves in the vicinity of
a = 0asd®.

In order to compare the results (4.4) and (4.4')
with results obtained by Houston’s method, we
expand the 3-term formulas, with x4, Xs, and x¢
given by (4.2) into power series in «; we obtain then

0®(a) = (4n)'[1 — 1.6449274° 4 1.028210a"

— 0.353043c° 4 0.079141c® — 0.0127332"° + -1,
(4.5)

givola = 0) = 0,

g¥(a) = (47)'[—0.094472a" + 0.0746700°

— 0.0258950° + 0.005428¢'° — ---].  (4.5)
It was also established that gi* (a) starts with an
o term. Comparing the coefficients in (4.4), (4.4)
and (4.5), (4.5), we see that for lowest exponents of a
the agreement is excellent and the g;’s obtained by
Houston’s method approximate very well the exact
solutions in the region @ < 1.

In Table I, the function go(a) is tabulated from
3, 6, and 9-term formulas, and furthermore, for
small o the results are given for the analytical ex-
pression (4.4).

We notice that for small & we have very good
agreement between all these functions but with
increasing o the functions start to diverge. The 3-
term function g&® distinctly differs from ¢ and g;”
when a increases, but gi® and g¢” differ only very
slightly for o < 2.

It was mentioned in Sec. I that the applicability
of Houston’s method is limited. The use of the finite
number of terms in the expansion does not allow to
define the functions ¢\ properly for all r. They have
proper behavior for relatively small r but for large r
they are completely wrong. The question occurs how
to establish the region of r where g;® (r) obtained
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TasLe I. The function go(a)/(4x)t for the simple cubic

structure,

go{a)/(4x)? obtained by Houston’s method go(a)/(47)t

3-term 6-term 9-term analytical
a expression expression  expression expression

0.00 1.0000 1.0000 1.0000 1.0000
0.05 0.9959 0.9959 0.9959 0.9959
0.10 0.9837 0.9837 0.9837 0.9837
0.15 0.9635 0.9635 0.9635 0.9635
0.20 0.9358 0.9358 0.9358 0.9358
0.25 0.9011 0.9011 0.9011 0.9011
0.30 0.8600 0.8600 0.8600 0.8600
0.35 0.8133 0.8133 0.8133 0.8133
0.40 0.7617 0.7617 0.7617 0.7617
0.45 0.7063 0.7062 0.7062 0.7063
0.50 0.6478 0.6478 0.6478 0.6478
0.55 0.5873 0.5874 0.5874 0.5873
0.60 0.5259 0.5259 0.5259 0.5259
0.65 0.4643 0.4643 0.4643 0.4643
0.70 0.4035 0.4035 0.4035 0.4035
0.75 0.3445 0.3444 0.3444 0.3444
0.80 0.2879 0.2878 0.2878 0.2877
0.85 0.2344 0.2342 0.2342 0.2340
0.90 0.1846 0.1844 0.1844 0.1840
0.95 0.1391 0.1387 0.1387 R
1.00 0.0981 0.0976 0.0976

1.05 0.0618 0.0612 0.0612

1.10 0.0306 0.0297 0.0297

1.15 0.0043 0.0030 0.0031

1.20 —0.0172 —0.0188 ~0.0188

1.25 —0.0339 —0.0360 —0.0360

1.30 —0.0462 —0.0489 —0.0490

1.35 —0.0544 —0.0577 —0.0577

1.40 —0.0589 —0.0630 —0.0630

1.45 —0.0600 —0.0650 —0.0650

1.50 ~0.0583 -0.0643 —0.0643

1.55 —0.0542 —0.0613 —~0.0613

1.60 —0.0481 —0.0566 —0.0566

1.65 —0.0406 -0.0505 —0.0504

1.70 —0.0320 —0.0434 —0.0434

1.756 —0.0228 —0.0358 —0.0359

1.80 -0.0134 -0.0281 —0.0279

1.85 —0.0040 —0.0204 —0.0203

1.90 0.0050 —0.0132 -0.0130

1.95 0.0134 —0.0065 —0.0063

2.00 0.0210 -—0.0006 —0.0004

from n-term formula approximate well the exact
g:(r). We do not answer this question here thoroughly;
we only make some conclusions comparing dif-
ferent results for g,.

Studying the expansion of x(r) we took into con-
sideration the region 0 < r < 2a. The upper limit
was chosen as 2a because in calculation of the inte-
grals of the type (3.1) for typical solids the function
&(r) is given as a linear combination of atomic
orbitals centered at the origin or at the first neighbors
positions and radial parts of most of these functions
vanish for r < 2a.
Comparing g with n = 3, 6, 9 with g, given
analytically, we see completely proper behavior of
g™ for @ < 1. In the region 1 < & < 2, we notice
that g differs a little from ¢{® and g{® so it differs
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certainly from exact g,. Comparing gi® with gi®
we may conclude that the region where the both
functions have the same values can be considered
as the region of a good approximation to the exact
solution.

Furthermore, the comparison of the several
lowest coefficients in (4.4) and (4.5) allows to suppose
that for the other coeflicients the agreement is also
good and the small differences in coeflicients can
give large differences in functions only for large a.

Thus we may expect that the function gq
satisfactory for calculating integrals in (3.9) when
the integration is over the distance not bigger than
2a. We may of course still use g{® beyond 0 < a < 2,
but the error of the calculation increases with in-
creasing distance of integration. We want to point
out that in calculation of Debye’s temperature®
using Houston’s method, the difference between
63 and 65, 65, 6;° was remarkable but the values

o, 65, and 6;° differed between themselves only very
slightly.

In Table II the functions g,(a) and gs(«) are
tabulated obtained from 3 and 6-term formulas, and
also g»(e) from analytical expression (4.4’) for small
a. Also, here we notice very good agreement for
small a and increasing discrepancies between g;

(8)

and g;” when a increases.

V. THE FUNCTIONS
PLANE WAVES IN A FACE-CENTERED-
CUBIC LATTICE

The function x(r) for face-centered-cubic lattice is
obtained from (3.7) by integration over the Bril-
louin zone which is given as a truncated octahedron.
We have the following exact expression for x(r):
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Tasig II. The functions gs(a)/(4x)t and gi(a)/(47)? for the
simple-cubie structure.

go(a)/(4m)h
obtained by
Houston’s method g(a)/(4x)} Houston’s method

ga(e)/(4m)t

obtained by

3-term

6-term

analytical
a expression expression expression expression expression

3-term 6-term

1(2)3 xsm; a
T 4\r («*

+

0.00 0 0 0 0 0

0.05 0 0 0 0 0

0.10 0 0 0 0 0

0.15 0 0 0 0 0

8 ig 0.20 —0.0001 ~—-0.0001 —0.0001 0 0

0.25 —0.0004 —0.0004 -—0.0004 0 0

0.30 —0.0007 —0.0007 —0.0007 0 0

0.35 —0.0013 -—-0.0013 -0.0013 0 0

0.40 —0.0021 -0.0021 -—0.0021 0 0

0.45 ~-0.0033 —0.0033 —0.0033 0 0
0.50 —0.0048 —0.0048 —-0.0048 —0.0001 -—-0.0001
0.55 ~—0.0068 —0.0068 —0.0068 —0.0002 -—0.0002
0.60 —0.0092 —0.0092 —0.0092 —0.0002 -0.0002
0.65 —0.0120 —0.0120 -0.0120 —0.0004 —0.0004
0.70 —0.0152 —0.0152 —~0.0152 —0.0006 —0.0006
0.75 —0.0189 —0.0189 -0.0189 —0.0008 —0.0008
0.80 —0.0229 -0.0230 -—0.0220 -0.0011 -—0.0011
0.85 —0.0272 -—0.0273 —-0.0272 -—0.0015 —0.0015
0.90 —0.0318 —-0.0318 -—0.0316 -—0.0020 -—0.0020
0.95 —0.0364 —0.0365 e —0.0026 —0.0026
1.00 —0.0410 -—0.0411 —0.0033 —0.0032
1.05 —0.0454 —0.0457 —0.0040 —0.0040
1.10 —0.0496 —0.0500 —0.0049 —0.0049
1.15 —0.0534 —0.0539 —0.0059 —0.0058
1.20 —0.0567 —0.0573 ~0.0069 —0.0068
1.25 —0.0594 —0.0601 —~0.0079 —0.0078
@) 1.30 —-0.0612 -—0.0622 —0.0090 —0.0089
1.35 —0.0623 —0.0635 —0.0101 -—0.0099
1.40 —0.0624 —0.0640 —0.0112 —-0.0109
1.45 —0.0616 —0.0636 -0.0122 -—0.0119
1.50 —88??51) —882%3 —0.0131 -0.0127
1.55 0. -0. —0.0139 -0.0134
g4n) FOR A SUM OF 1.60 —0.0535 —0.0570 —0.0146 —0.0139
1.65 —0.0489 —0.0531 -0.0150 —0.0142
1.70 —0.0436 —0.0485 —0.0153 —0.0143
1.75 —=0.0377 -—0.0433 -0.0153 —0.0141
1.80 -0.0311 -0.0376 —0.0151 —0.0138
1.85 —0.0242 —0.0316 —0.0146 —0.0131
1.90 —0.0170 —-0.0254 —0.0140 -0.0122
1.95 —-0.0097 -0.0191 -0.0130 -0.0110
2.00 —-0.0025 -—0.0129 -0.0119 -—0.0096

2r 27z 2 . 2
(cos—y+cos7)+ (ysm——y+z m;rz)
2
- )@ — z’)
. my ( oz 2z ) Yy ( 2nx 2m>
sin —=* | cos —= 4 cos — cos —~ == =
y a a + a + cos a @ sin Tz a
2
@' — O — 2%
. w2 2w 2 .
z28In — 2 (cos-—(—z—-+ cos Wy) + cosﬂ(xsmgg—% -+ ysmg;r—y) .

5.1
GRS G-
The appropriate expressions for x(r) for nine directions are written below. The magnitudes o4, ¢, - - - ¢; are

the same as given for the simple-cubic structure.
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APPLICATION OF HOUSTON'S METHOD. I

|
<3810 X4

do4
X [2 — 2coses + 2¢4 sin ¢, + P4 COS ¢4l,

—1—3 sin ¢p €OS ¢sl2 — 2 cos ¢p =+ ¢p sin ¢5],
B

1 . .
Tog? oI ecl366(3 — 4sin’ ¢c)

+ 6pc 08 pc sin g¢ + sin® pcl,

ﬁ—a [—10 + 32 sin® ¢ — 24 sin* ¢y
D

+ 10 cos ¢p — 15 sin’ ¢p €08 ¢5),

[3¢x cos ¢& sin’ ¢x(1 — 2 sin® ¢g)

+ 2sin pg(—1 + 4sin’ ¢x) — 3 sin’ oz

+ cos ¢z — 2 €08 ¢x sin’ @), (5.2
-1 . .
3607 [3¢r sin’ or

X (6 —21 sin® ¢ + 16 sin* ¢r) + sin op
X (18 — 64 Si112 OF + 48 Sin4 OfF — 18 cos ©p
+ 73 cos ¢r sin® pp — 64 cos ¢p sin* ¢r)],

30¢q
X (15 — 120 sin® g -+ 256 sin® ¢g
— 160 Si.I].6 (pg)

[oe cos ¢g sin’ ¢g

2 Gin po(—9 4 157 sin® g — 612 sin* ¢o

T1i5

. 2 .
+ 864 sin® ¢ — 400 sin® ¢e) + 15 8i0 ¢o

X 08 ¢a(9 — 40 sin® ¢o + 40 sin' ¢o)],

21005
X (13 — 160 sin® ¢y + 608 sin” ¢z
— 896 sin® ¢u + 448 sin® o)

+ sin ¢u(—26 + 543 sin® ox

— 3429 sin* o + 8512 sin’ g

— 8960 sin® ox + 3360 sin™® o)),

[2 sin ¢z €OS ox

1 .
~5—3 lor cOs @1 sin® ¢;
L1

X (21 — 308 sin’ ¢; + 1232 sinl ¢
— 1824 sin® ¢ + 896 sin® o)

+ ,%sin (=51 + 939 sin’ ¢
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— 4744 sin* ¢; + 9920 sin® ¢,
— 9200 sin® ¢; + 3136 sin'°® ¢;)

2 .
+7Sln<h CO8 ¢

X (51 - 840 Sin2 or + 3528 Sin‘ Lr
— 5376 sin® ¢; + 2688 sin® ¢;)].

As in the case of the simple-cubic structure, the
function go(e) is calculated using 3, 6, 9-term formu-
las and g.(«) and g;(«) using 3 and 6-term formulas.
The functions are tabulated in Tables IIT and IV.
As in the previous case we have very good agreement
between g5, ¢5¥ and ¢ for small @. When « in-
creases the functions start to diverge. The numeri-
cal values of g§ and ¢® differ much more than the

values of g{® and ¢{*. For example, at « = 1.5, we

Tasie III. The function go(a)/(4w)}t for the face-centered
cubic structure.

go(a)/(4m)}
3-term 6-term 9-term
a expression expression expression
0.00 1.0000 1.0000 1.0000
0.05 0.9903 0.9903 0.9903
0.10 0.9615 0.9615 0.9615
0.15 0.9149 0.9149 0.9149
0.20 0.8523 0.8523 0.8523
0.25 0.7765 0.7765 0.7765
0.30 0.6903 0.6903 0.6903
0.35 0.5973 0.5973 0.5973
0.40 0.5009 0.5009 0.5009
0.45 0.4046 0.4046 0.4046
0.50 0.3117 0.3117 0.3117
0.55 0.2251 0.2250 0.2250
0.60 0.1471 0.1471 0.1471
0.65 0.0797 0.0798 0.0798
0.70 0.0240 0.0241 0.0241
0.75 —0.0194 —0.0192 —0.0192
0.80 —0.0506 —0.0503 —0.0503
0.85 —0.0703 —0.0700 —0.0700
0.90 —0.0797 —0.0792 -~0.0792
0.95 —0.0804 -0.0797 ~0.0797
1.00 —0.0740 —0.0731 —0.0731
1.056 —0.0626 —0.0614 —0.0614
1.10 —0.0481 —0.0465 —0.0465
1.15 —0.0322 —0.0301 —0.0301
1.20 —0.0165 —0.0140 —0.0140
1.25 —0.0024 0.0006 0.0006
1.30 0.0093 0.0128 0.0128
1.35 0.0179 0.0218 0.0218
1.40 0.0231 0.0275 0.0275
1.45 0.0249 0.0298 0.0298
1.50 0.0239 0.0291 0.0291
1.55 0.0203 0.0259 0.0259
1.60 0.0150 0.0207 0.0208
1.65 0.0087 0.0144 0.0145
1.70 0.0021 0.0077 0.0077
1.75 —0.0042 0.0011 0.0012
1.80 —0.0095 —0.0047 —0.0045
1.85 —0.0135 —0.0092 —0.0091
1.90 —0.0159 —0.0124 —0.0122
1.95 —0.0167 —0.0141 —0.0138
2.00 —0.0158 —0.0142 —0.0139
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Tapre IV. The functions gs{a)/(4x)t and gs(a)/(4r)? for the
face-centered cubic structure,

goa)/(4m)} ga(a)/(4m)}
3-term 6-term 3-term 6-term

o expression  expression  expression  expression
0.00 0.0000 0.0000 0 0
0.05 0.0000 0.0000 0 0
0.10 0.0000 0.0000 0 0
0.15 0.0001 0.0001 0 0
0.20 0.0003 0.0003 ] 0
0.25 0.0007 0.0007 0 0
0.30 0.0015 0.0015 0 ¢
0.35 0.0026 0.0026 0.0001 0.0001
0.40 0.0041 0.0041 0.0001 0.0001
0.45 0.0061 0.0061 0.0002 0.0002
0.50 0.0085 0.0085 0.0004 0.0004
0.55 0.0113 0.0113 0.0007 0.0007
0.60 0.0143 0.0143 0.0011 0.0011
0.65 0.0174 0.0174 0.0017 0.0017
0.70 0.0205 0.0205 0.0024 0.0024
0.75 0.0233 0.0233 0.0032 0.0032
0.80 0.0256 0.0256 0.0043 0.0043
0.85 0.0273 0.0273 0.0055 0.0055
0.90 0.0281 0.0281 0.0068 0.0068
0.95 0.6280 0.0280 0.0082 0.0083
1.00 0.0270 0.0269 0.0096 0.0097
1.05 0.0249 0.0248 0.0110 0.0111
1.10 0.0220 0.0218 0.0123 0.0124
1.15 0.0183 0.0180 0.0133 0.0136
1,20 0.0141 0.0135 0.0141 0.0144
1.25 0.0096 0.0088 0.0145 0.0149
1.30 0.0050 0.0039 0.0145 0.0151
1.35 0.0007 —0.0008 0.0140 0.0147
1.40 ~0.0030 —0.0051 0.0130 0.0140
1.45 —0.0060 —0.0087 0.0116 0.0128
1.50 —0.0081 —0.0114 0.0097 0.0112
1.55 -0.0091 -—Q.0131 0.0075 0.0092
1.60 —0.0090 —0.0138 0.0050 0.0070
1.65 —0.0079 —0.0134 0.0024 0.0046
1.70 —0.0059 —0.0121 —0.0003 0.0022
1.75 —0.0032 —0.0101 —0.0028 —0.0002
1.80 0.0001 —-0.0074 —0.0051 —0.0023
1.85 0.0035 —0.0043 -~0.0071 -0.0042
1.90 0.0069 —0.0011 —0.0086 —0.0056
1.95 0.0099 0.0019 —0.0095 —0.0066
2.00 0.0124 0.0046 —0.0098 —0.0072

have (g¢® — gi*) = 0.0052, but (g¢® — gi%) is still
equal to zero. For the functions g, and ¢g; we have
also very good agreement between g{> and ¢{® for
small a.

We want to point out that the first zero for g, is
located in the vicinity of r & a for the simple cubic
lattice and in the vicinity of r & 0.7a, which is
about a/(2)? for the face-centered cubic lattice. The
reason for this is that the first zero of x(r) oceurs at

the positions of the first neighbors.

VI. NOTE ON APPLICATIONS TO
SOLID STATE THEORY

One of the most fruitful approaches to the compu-
tation of energy band structures in solids has been
the OPW (Orthogonalized Plane Wave) method."

1 C, Herring, Phys. Rev. 57, 1169 (1940); see the review
by T. O. Woodruff, in Solid State Phys. 4, 867 (1957).
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We write an arbitrary plane wave as

Yulr) = N_*e‘(kﬁk)'r: (6.1)

where k; is 27 times a reciprocal lattice vector and
k runs over the first Brillouin Zone of thela ttice
concerned. The OPW method consists of assuming
that a certain finite set of “core bands” are ade-
quately described by tight-binding wavefunctions,

pult) = N7 ; ¢ Fe.(r ~ R), (6.2)

where R locates a lattice site, » g runs over all of
them, and ¢.(r — R) is an atomic function centered
on lattice site R. We assume no overlapping of wave-
functions on different sites, for simplicity. The OPW
method consists of orthogonalizing the plane wave
(6.1) to all the core states (6.2), by the Schmidt
process. Then the orthogonalized functions

Vo = ¢ — ; (Bers Yir)ber 6.3
are used in a linear variational determination of
energies for each value of k. Associated with each k
and each energy there are one or more linear com-
binations of the states ¥,,.

In some applications it is useful to construct a
localized set of states known as Wannier functions.'?
If a Bloch state u,.(r) is known (such as the linear
linear combination mentioned just above), the cor-
responding Wannier function is defined by

a(r —R) = N} Zk: e Puu(r),  (6.4)
where the sum runs over the whole first Brillouin
Zone. The Wannier function associated with a
single OPW (6.3) has a very simple analytical form,
and may be useful'® as a zero-order localized func-
tion. It is

at —R) = N Y ¢ Ry,
o (6.5)
= ¢™!"x(r — R)

- GZ g; BC(k.‘I;R - R)}d’c(r - R’)t

where B, simply expresses the nonorthogonality of

x with atomie functions on its own site and on

neighboring sites:

B.(k;R —R) = f 8.(r — R/ R )™=+ 1y gp.
(6.6)

2 ;. H, Wannier, Phys. Rev. 52, 191 (1937).
13 R. 8. Knox (private communication).
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The function x(r) studied in the bulk of this paper
is now seen to be part of ““the Wannier function of a
plane wave,” and as such it enters into analytical
expressions very similar to those of a tight binding
theory. This explains the usefulness of having the
expansion of x(r) in spherical harmonics; in the
special case k; = 0, only s-like core states contribute
to the sum over ¢ and we have, for example,

B.0;0) = [ 6.y dr,
6.7

= ot [ Pu@aor o

where ¢n, = [P, (r)/7]Y00(6, ¢). The quantity (6.7)
gives the overlap of x(r) with an s function centered
at the same lattice site. For R — R’ 3 0 in (6.6), it
is necessary to perform two-center integrals, where
again it is usually coenvenient to have spherical
harmonic expansions (see, e.g., the method of
Léwdin'*). We have verified that the tables given
herein are sufficient to compute most quantities of
the form (3.1) arising from these considerations,

1 P, 0. Léswdin, Advan. Phys. 5, 1 (1956).
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with particular reference to Fe, Cu, Ar, and NaCl.
Some of the results will be presented in a forth-
coming publication on exciton oscillator strengths in
the latter two crystals,

VII. SUMMARY

A general discussion of the “ Wannier Funetion of a
plane wave’ has been presented, along with approxi-
mate tabular values of its Kubic Harmonic com-
ponents g;(r) in two specific lattices, simple-cubic,
and face-centered cubic. It is emphasized that the
g:(r) are in fact functions of &« = r/a s0 that they
depend only on the structure and can be used for
any material with simple-cubic or fee structure.
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We investigate a frame of a model of quantum field theory with a degenerate vacuum. At least one
vacuum is cyclic. The field is covariant under a “gauge’ transformation. We show the existence of
nop-gauge-invariant vacuum states. We define ‘“‘observables’” as gauge-invariant operators; the
algebra of these does not coincide with the algebra of the field operator; the reduction of the former

algebra reflects a superselection rule.

1. INTRODUCTION

HERE is a constant interest in theories with

degenerate ground state in nonrelativistic (many-
body problem) as well as in relativistic (quantum
field theory) approach.

As far as the relativistic field theory is concerned,
the degeneration of the Lorentz-invariant vacuum
state has been partly elucidated by some theorems.' ™
In particular it has been shown that there cannot
be a degeneracy of the vacuum state if every
vacuum state is a cyclic vector for the algebra of
field operators.

In this paper we intend to investigate the case
that may occur if not every, but at least one, vacuum
state is cyclic. We examine a frame for models of
relativistic quantum field theory which display cer-
tain symmetry properties. The basic idea is already
contained in Haag’s paper*'® concerning the Bogolu-
bov—BCS model.*"® We consider field theories ful-
filling the usual assumptions of the Wightman
framework, i.e., the field operator is an operator
valued distribution in a separable Hilbert space 3C;
the smeared out field maps a dense set D of 3¢
into itself, transforms according to a unitary rep-
resentation of the inhomogeneous Lorentz group,

* On leave of absence from the Institute of Theoretical

ics of the University of Wroclaw, Wroclaw, Poland.
Ph}',rSOn leave of absenc}é from the Max Planck Institut fir
Physik und Astrophysik, Munich, Germany. .

1 Work supported by the National Science Foundation.

1 H. J. Borchers, Nuovo Cimento 24, 214, 214 (1962).

2 H. Reeh and S. Schlieder, Nuovo Cimento 26, 32 (1962).

¢ H. Araki, Progr. Theoret. Phys. (Kyoto) 32, 844 (1964).

¢ R. Haag, Nuovo Cimento 25, 287 (1962).

s H. Ezawa, J. Math. Phys. 5, 1078 (1964).

¢ J. Bardeen, L. N. Cooper, and J. R. Schriefer, Phys.

. 108, 1175 (1957). -
Reg N. N, Bogglubozr, V. V. Tolmadov, and D. 8. Sirkov,
A. N. SSSR, Moskva, 1958. .

8 While this paper was under preparation we lea,rnegi from
Dr. Guenin and Dr. Emch that they extended Haag's pro-
cedure on similar lines for the BCS model as we intend to
do here for field theory. See G. Emch and M. Guenin, pre-
print, February 1965. After this note was finished we heard
that Dr. Uhlmann developed similar ideas.

has a vacuum state invariant under the Lorentz
transformation as a cyclic vector and is local; the
spectrum of the translation operator is assumed to
lie in the forward light cone. We are going to show
that there may exist vacuum states noninvariant
under the symmetry which is inherent to the field.
This is mainly due to the reduction of the original
reducible algebra of field operators possessing the
mentioned symmetry property into irreducible al-
gebras which are no longer invariant under this
symmetry.

Most of the calculations are carried out in detail
for a special example of gauge (which, however,
is not a gauge transformation in the usual sense
as, e.g., for free charged fields). Most of the results
hold also for other examples of symmetry as con-
sidered, e.g.,, in connection with the Goldstone
theorem,® briefly mentioned in the concluding Sec. 5.

Starting from the gauge properties of the theory
we are able to give a reasonable definition of the
observables. It follows that not all observables belong
to the algebra of the field and vice versa. The
von Neumann algebra of the field operator and that
of the superselecting operator (which is contained
in the algebra of observables) coincide with the
set of all bounded operators. The reduction of the
Hilbert space with respect to the center of the
observables into the coherent sectors is in a certain
way “complementary’”’ to that which reduces the
algebra of the field operator. This follows rather
trivially from the assumptions made for the gauge
transformation.

2. CONSTRUCTION OF THE MODEL

In this section we are going to outline the con-
struction of the model with which we are mainly

® See in particular J. Goldstone, A. Salam, S. Weinberg,

Phys. Rev. 127, 965 (1962); compare also J. Goldstone, Nuovo

?igl?nsgzil)g' 154 (1961) and W. Gilbert, Phys. Rev. Letters 12,
1 .
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concerned. To this aim let us consider a charged
scalar field 4,(z) and the adjoint 4. (z) in a separable
Hilbert space 3¢,. Let us assume this field to satisfy
the axioms listed in the introduction and to be
irreducible in 3¢,, so that there is only one vacuum
state Q.. We take then a family of duplicates of
such fields, 4., A} 3¢., Q. for a continuous «,
0 < a < 27. The fields in different Hilbert spaces
are linked together by a one-parameter family of
isometric transformations G, (8) [8 real, G, (84 27) =
G.(8)] in the following way'®**:

G,,(ﬁ)zca = Hasp
Ga(ﬁ)ﬂa = Qa+ﬁ
Gu(B) A o(2)Grrs(B) = A.rp(2)e™
G(B)AUD)Guss(B) = Arss@e™,

@.1)

(2.2)

where

Grrs(B) = (G.(8)).
If U.(A, a) denotes the representation of the
Lorentz group in 3¢, [i.e., U.(A, @)4.(x)UZ}(4A, a) =
A . (Az + a)] then it follows using the irreducibility
of A, in 3¢, that

GoB)Ua(A, 0)Gass(B) = Usus(A, a).
We get also that
Gﬂ(B)IaGIH-ﬁ(B) = Ia+ﬁ’

where I, is the identity operator in 3C,.

Let us now form the direct integral of the spaces
3¢, (for the notation see Ref. 12) as well as of op-
erators and vectors in these spaces.

(2.3)

= [ e,

®
0= [ o

A0 = [ 40,

U(A, a) = j U, a).

24)

10 Instead of (2.2) we could as well consider the more

general looking transformation
Ga(ﬂ)Aa(z)Ga+BT(ﬁ) = Va+ﬂAa+3(z)V_1a+ﬁe"” etc-,
VargVars? = VasstVasg = lasp
Va+ﬁgm+ﬂ = Qoryg,

but it turns out that by introducing @,(8) = Vays1Ga(8)
we get again (2.2) and (2.3). The transformation ¥V, corre-
sponds to an irrelevant change of frame of reference in 3C,.

11 ' We could start with the transformation

Ga(B)Aa(2)Go+51(B) = Ay +5(x)f(B)
where f(8) is a function; it turns out, however, that this
transformation reduces to (2.2) again (except for the trivial
cage f = 1).
12]1\/1. g. Neumark, Normierte Algebren, (Deutscher
Verlag der Wissenschaften, Berlin, 1959), Sec. 41, p. 520.

149

The symbol de denotes here the Lebesgue measure
on 0 ::- 27;  is a Lorentzinvariant state in the
separable'® Hilbert space 3¢, the components of
which in the different spaces are just .. The
meaning of the direct integral is as follows: If
®, ¥ & 3¢ we have (&, AY¥) = [37 (,, 4,7,) da.
The G.(8) give rise to an operator G(B) in 3¢

@ 6OV = [ (Burs, GuB)L.) da

The operator G(8) which we call hereafter a “gauge
transformation’” is a unitary operator in 3¢, which
commutes with the Lorentz group and leaves Q
invariant.

We have also

GRADGE)™ = A@)e”,

* Lo 2.5)
GR)A ()G = A'(x)e ™.

Let us investigate under what additional assump-
tions the algebra @ of the unbounded field operator
A(x) given by (2.4) is cyclic with respect to Q in 3C.

In case @ is not cyclic, there exists a vector @ € 3¢,
® 5 0 such that (®, AQ) = Oforevery A € G =
f® @.. @, is the algebra of the unbounded field
operators in 3C,, well defined on a dense domain
of 3¢,. We have (&, AQ) = [ da(®,, 4.2.). This
should also vanish for the particular choice of A

(]
A = BUU, 0)A° = f BULI, ) A%,

where B¢, A are products of the smeared-out field
operator and its adjoint with test functions of
compact support in Minkowski space. By virtue
of (2.1) and (2.2), we get

0 = (&, B°U(I, 0)A°9)

= [ da(a,, BLU, @) 4222) 26)

- f dor e (G (@), BIUT, a) A30),
where m is the difference of the number of field

operators and the number of its adjoints in B® and
A°. Now

Vo = f do e ™ Gl{e) .

is a vector in 3¢, [since (2.6) is a linear integral over
vectors belonging to 3¢, and |{|¢o)| £ [ de [ do/

1 J, Dixmier, Les algébres d'opérateurs dans U'éspace Hil-
bertien (Gauthier-Villars, Paris, 1957), Ch. II, Sec. 1.6,
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[|®a]] [|®a-]] < «]. Thus by applying a well-known
result,’* we get
lim (3, B°U(I, ) A°9)

o

- f da 6" (G (@) P, B2 (Qoy A%

= [ de e (@, BLI(S, 4390), @7
where a is spacelike and n is the difference of the
number of field operators and the number of its
adjoints in A3, Notice that the cluster decomposition
theorem proved for a dense set of states on the
left-hand side of the matrix element can be easily
extended to an arbitrary state out of 3.
From (2.6) and (2.7) follows
fd, e (B, BLOI (D, 4650 =0 (2.8)
for all B?, A;. Should at least one Wightman fune-
tion (Qo, A3Q) for every n = 0, =1, %2, -+ be
different from zero (this is apparently not the case
for free fields!), the last equation yields

(%4, Bafta) = 0 (2.9
for every B for (almost) all a. This, however, implies
&, =0, & =0, 2.10)

which secures the cyclicity of @ with respect to Q.

The restrictions imposed above onto the Wight-
man functions can be weakened in the following
way. Assume

(D, AsQ) # 0 2.11

for n = 1. Then in virtue of
0 = (Do, A5Q0) {2, A5Q)

= lim (Q,, AsUs{I, ) A58},

the Wightman function for n = 2 under the limit
cannot vanish for all finite a. In a similar way we
find that there are Wightman functions different
from zero for every n > 0. Formula (2.11) implies
also that the Wightman function for n = —1.

(o, 3f90) #0;

this enables us to construct Wightman functions
different from zero for every n < 0.

Should the information (2.11) be not available,
we have to look for two nonvanishing Wightman

1 Cluster decomposition theorem, of,, e.g. H. Araki, K.
Hepp, and D. Ruelle, Helv, Phys. Acta 35, 164 (1962).
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funetions for n, and n,, different from zero and
having no common integer factor (ie., n, and =z,
have to be relatively prime); if such functions exist,
then there are again Wightman functions different
from zero for every n. This can be shown by a
construction similar to the preceding one based on
the fact that every integer n can be represented
as follows:

n = vn, + ung

with integers » and .

Thus we arrive at the conclusion that @ iy cycli-
cally represented in 3C with @ as cyclie vector pro-
vided that (R, A45Q,) # 0 either for # = 1 or for
n1, 7, relatively prime. The first case comprises
the case when the one-point function differs from
zero (as, e.g., in a theory with “tadpoles”).

Assuming that the before-mentioned hypothesis
holds, we can make use of Borchers’ result’ that
the commutant @ consisting of all bounded oper-
ators commuting with @ is Abelian and therefore
contained in the von Neumann algebra @”, the
double commutant of @' (a slightly different proof
of Borchers’ assertion is given in the Appendix I).

Thus we succeeded in constructing a reducible
field A possessing the symmetry property (2.5) and
being cyclic with respect to a vacuum state @ sym-
metric under the gauge transformation. The sub-
space of vacuum states’®

@
%0 = [ 5.0

(where 3C,(0) is the subspace of vacuum states in
3. consisting of O, only), contains also vectors non-
symmetric with respect to the gauge transformation,
e.g., we can choose a function f(a) (0 £ & < 27)
such that

6@ [ 10, = [ f@e.e.

= fe fla = B)Q, # fEB () Q..

Not all vacuum states are cyclic with respect to @.

The hypothesis concerning the Wightman function
is a sufficient condition. There is an indication that
it is also a necessary one. We shall return to this
point in the next section to make it plausible.

3% Cf. the remark of R. Haag and D. Kastler, J. .
Phys. 5, 548 (1064), Sec. o, » 4. Math

¢ H.-J. Borchers, Ref. 1, has proved that every state in-
variant under translations is invariant under the whole
Lorentz 3}'011;3, provided there exists a Lorentz-invariant
state, cyclic with respect to the field,
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3. REDUCTION OF THE ALGEBRA OF THE
FIELD POSSESSING A GAUGE SYMMETRY

In this section we want to examine the reverse
problem to that considered in Seec. 2, viz., the
standard reduction of the field algebra.

We start with a reducible charged scalar field A (x)
in a separable Hilbert space 3C. A(z) satisfies the
axioms stated in the introduction. In particular, it
is assumed to be cyclic with respect to a Lorentz
invariant state © and subjected to a gauge trans-
formation (2.5). The unitary representation of the
gauge group, G(B) (B real) is assumed to leave Q
invariant. Lorentz invariance then implies that G(8)
commutes with the representation of the Lorentz
group.

Let @ again denote the algebra of unbounded
operators generated by the field operator. We may
associate with @ two algebras of bounded operators:
a weakly closed von Neumann algebra ® = @ and
a uniformly closed symmetric algebra X (ef. Ap-
pendix II) which is weakly dense in ® = X’ and
for which &' = @’ = ®'".

In virtue of a theorem of Borchers’” we know
that @' is Abelian so it coincides with the center
of ®. Therefore we are able to make a decomposition
of the Hilbert space 3C into a direct integral of
Hilbert spaces 3¢,, with respect to @’

5 = f 5 [du(@],

o varies over a finite interval D (cf. Ref. 18), such
that the algebra X splits into irreducible algebras
X, on 3C, [more precisely: almost every X, in the
sense of the measure u(a) is irreducible).

®
5€=f K..

The commutant X’ consists of operators of the shape

[ fart.,

where I, is the unity operator on 3¢, and f(a) a
measurable function of a on D.' The same de-
composition with respect to @’ yields for & = | ® @R,
(Ref. 20), where again the ®,. are irreducible in
3¢,. According to Borchers' the unitary representa-
tion U(A, a) of the Lorentz group commutes with
every element out of @'. Therefore U(A, a) € & and
TI“I.—-.}.—QBorchers, Ref. 1, see also Appendix I.

18F. Riesz and B. v. Sz.—Na%'e,r Vorlesungen diber Funk-

tionalanalysis (Deutscher Verlag Wissenschaften, Berlin,
1956), Sec. 131, p. 343.
19'M. A. Neumark, Ref. 12, Sec. 41.4, Theorem 6, p. 525.
0 E.g.: M. A. Neumark Ref. 12, Sec. 41.3 or 1. E. Segal,
Mem. Am, Math. Soc. 9, 34 (1958).
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®
U, @) = f UL, a).

The vector € can be also decomposed, & = [® €,.
Since Q is cyclic with respect to @ (almost) every
Q. is different from zero. On the other hand the
algebra ®, is irreducible in 3¢, and therefore Q,
is the unique vacuum in 3¢, (and is eyelic).'”*"*

Since £ is cyclic for ® in 3¢, we get (cyclic as
well as non cyclic) vacuum states different from Q
by applying an element (different from AI) out of
®’ onto Q.

Each space 3¢, is a Hilbert space of infinite
dimensions or dimension 1 since there are no finite-
dimensional nontrivial representations of the Lorentz
group.

To proceed further we have to impose some addi-
tional restrictions fitting our model. In particular
we need some information concerning how G(B8) is
related to the decomposition of 3¢. We restrict our-
selves here to the case considered in Sec. 2: du(a) = da
is pure continuous, D is normed to the interval
0 --- 27 and G(B) connects the different spaces in
the way given by (2.1) and (2.2). This implies that
the representations of the Lorentz group have the
same spectrum with the same multiplicity in every
space 3C..”* It also rules out of our consideration
the trivial case of 3¢, consisting only the of vacuum
state ©,. Due to (2.3) the operator G{8) does not
commute with @’ and so does not belong to ®.

Let us now return to the remark made at the end
of Sec. 2 concerning the condition imposed on the
Wightman functions. Let us consider the case when
in addition to (2.2) a unitary transformation H,(y)
exists in JC, with the property

H.(MADH(y) = ¢ Aa(z)
H ()AL@HL(y) = e 4.(2).

3.1

Then
GolB) A a(2)Glss(B) = H ars(B) A urp(@H ers(B)-
It follows that H, commutes with U, (4, a) and that

H"MQ = M1)€ ¥ =1

For a monomial A, of field operators (n denotes
the difference of the number of field operators and
the number of its adjoints) we get in virtue of (2.2)

(Qa, Aaﬂa) = (Qu-l-ﬁy Aa+ﬂga+ﬁ)ei”ﬁ' (3'2)

2t Under the assumptions stated at the beginning of this
section the necessary and sufficient condition for a vector to
be cyclic with respect to @ in 3¢ is to have nonvanishing
components in almost every 3C,.
22 N. 1. Achieser and I. M. Glasmann, Theorie der Linearen
0 ergto%n im Hilbert-Raum (Akademie Verlag, Berlin, 1954),
0. 71-72. :
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On the other hand, by means of (3.1), we get that
(3.2) is equal to

(Raspy AatsQasp).

Consequently, the Wightman functions vanish for
n # 0 and coincide in different space for n = 0,

(Q‘!} Aaﬂa) = (QﬁJ Aﬂﬂﬁ);

therefore, the algebras @, are equivalent [the iso-
metric mapping is given by H..s(8)G.(8)]. In this
case the reducible ® is a factor. @ cannot be cyclic.’
It is clear that @’ does not belong to ®. Neverthe-
less, a reduction of the algebra with respect to a
maximal Abelian algebra in @’ is still possible. It
gives again the decomposition (2.4). The charged
free scalar field with proper commutation relations
fit into this trivial case. H,(y) is then the conven-
tional gauge transformation; it belongs to the
algebra G’.. H(y) = [ ® H.(y) belong then to &
and applied to 4 (z) yields the same result as G(v)
although both operators have not much in common.

4. THE ALGEBRA OF ‘‘OBSERVABLES”
AND ITS REDUCTION

Following the example of the conventional gauge
theory where the observable quantities are gauge
invariant we define “‘observables” as all bounded
self-adjoint operators on 3C which commute with
G(8). They form a van Neumann algebra ©. It
follows immediately that:

(1) © does neither coincide with ® nor lies inside
®. To exhibit it let us consider the projection
operator Py on @ = fe Q.. Py commutes with
G(B) since © is invariant under G(8). On the other
hand, P 3 does not belong to & unless ® is irreducible
since @ is a cyclic vector for Q.

(2) ® is not contained in © either. Should that
be the case, G(8) would commute with ®, ie.
G(8) C &', and G.(8) would not connect 3¢, with
Honpe

(3) The intersection ® M © is not empty, e.g.,
the Lorentz group is contained in ® M ©.

4) ® M © = Al (A is a number) since the
elements of &', different from I do not commute
with G(8). It follows that

@Y ) =® 4.1

where ® denotes all bounded operators on 3C.
Obviously, G(8) € 0. Let us write G(8) = ¢™9;
then all spectral projections of the “charge” Q@ = @t
belong to © (Q itself is unbounded). Since on the
other hand G(B) € ¢, G(8) belongs to the center
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©® M ©. Again in analogy to conventional theory
we call the algebra of the center the algebra of
“superselecting’ operators. It follows that

(5) The center © M 0’ coincides with ©’. To show
it take an o« & O, then a commutes with G(8)
since G(8) € 0; thus « € 0. The last statement
enables us to perform a complete measurement.?®**

(6) O consists of all bounded functions of @ only.
This results from the fact that every o € © com-
mutes with every bounded operator commuting with
Q; thus o is a function of Q.*®

We can reformulate (4.1): the von Neumann
algebra of the field 4(z) and G(8), is the algebra
of all bounded operators in 3C.

One easily finds eigenvalues of G(8) and Q. For

example, for
@ 3
Q(n) — f e—zanﬂa’ (4.2)

we have

GPQ™ = ™™,

From the periodicity of G(8) follows that n is
integer. All vectors 92 belong to the same eigen-
value n. It turns out that the whole spectrum of Q
is represented by the numbers n = 0, &1, £2, ---
because of the relation (2.5) and the cyclicity of
Q™. The @™ form an orthonormal set of vectors
complete in 5¢(0).

@ = Q' is distinguished by the property to be
invariant under G(8) and under a TCP-operation
provided the last transformation is defined ap-
propriately in the 3¢, (2, has to be T'CP-invariant
for every o). Under TCP-operation @™ goes over
into ™. The projections on the Q™ are also
observables not belonging to ®. The Wightman func-
tions for different @ coincide.

If “physically realizable states” are defined as
states the projections on which are observables,®
then the vectors @™ are such states. There are
other vacuum states which are not physically real-
izable (e.g., @ = [® 7.Q, if 44 is 1 on a subinterval
of 0 -+ 27 and zero elsewhere).

Let us now examine the decomposition of @ with
respect to ©’. The decomposition of © with respect
to a maximal Abelian subalgebra of ©',*° is estab-

= J. M. Jauch, Helv. Phys. Acta 33, 711 (1960).
(192‘1.1). M. Jauch and B. Misra, Helv. Phys. Acta 34, 699

» 5Cf e.g., F. Riesz and B. v. Sz.-Nagy, Ref. 18, Sec. 129,
p- 335.

* See e.g. R. Streater and 8. A. Wightman, PCT, Spin
and Statistics, and All That (W. A, Benjamin, Inc., New York,
1964), pp. 5-7.
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lished by the spectral decomposition of @ (we could
choose the Cayley transformed of @ to deal with a
bounded operator), i.e.,

I = ;@5&‘3
0= Z@am
o = {2 Dal)

where I, is the unity in 3¢, the ¢, are complex
numbers. The algebra 0, is irreducible in 5C, since
© C ©. The spaces JC, are ‘“‘coherent” sectors in
the sense of “superselection” rules. Every 3C, con-
tains a vacuum state Q" and the Lorentz group is
again unitarily represented in every 3c,. Here we
see immediately that no 3C, can be one dimensional:
Since 2 is cyclic we know (if 3¢ does not consist
of vacuum states alone) that there is a product of
smeared-out field operators 4 so that AQ® € 3Civ
is no vacuum state. But for the same A, it holds
that AQ™ for any n is no vacuum state since Q™
is related to @' by a unitary transformation V
out of @ (namely V = [® &™*°[,), by virtue
of which AQ™ = @ would imply 42% = V¥,
which again would be Lorentz-invariant contrary to
the assumption.

The complementary character of the two de-
compositions with respect to the field and the ob-
servables is exhibited by the commutation relations
of the “gauge operator”

L = feh@a}'a

related to the field and the “charge” @ = = & nl,
related to the observables: [Q, L] = 4.

5. CONCLUDING REMARKS

The results obtained for a single model in Secs. 2-4
can be generalized to physically more interesting
cases, e.g., to the case of a multiplet of n > 2
spinless real fields 4’ (z) where the transformation
of the fields under the symmetry transformation
G(p) is given by’

0BA” O™
= ¥ @A),

#=1

v=1,.--m, 6.1
where Q(8) is unitary, T, = T% is a c-number
tensor; 8 a real number. The expectation value of
an infinitesimal transformation (5.1) with respect
to a vacuum state Q' noninvariant under G(8).
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(2, AT ()GB) )

=8 Z, TUL, AP (@) Q).+ (2,24 () )
does not need to vanish; this amounts to

(@, A% @)2) # 0.

This in turn leads to the conjecture known as the
Goldstone theorem.® We are not going here to prove
or disprove the latter. We intend only to point out
the following: Let us return to our model. Assume
the field we are considering has asymptotic fields
belonging to a certain mass. Then these free fields
possess the well-known gauge symmetry (and a
locally conserved current} which is completely dif-
ferent from the transformation G(8) as investigated
here for the interacting field (see Sec. 2). Incident-
ally, the free fields may possess in addition the
transformation property under G(3).
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APPENDIX I

We give here a proof slightly different from that
of Borchers’ that under the assumptions stated in
the introduction, @' is Abelian.

Let us consider

@, A@y, oo 2JuB°(h -+ YD), (AD

where A° and B° is a product of A4 and 47 taken
at the world points z,, -+- , ¥, and u belongs to
@’. As u commutes with 4 and A (Al) is equal to

(Qr Ac(:vl v xn)B‘(yI: te ym)ﬂl): (A2)

where @' = uQ is again a vacuum state invariant
under the Lorentz group. Applying the standard
procedure based on the spectral condition, Lorentz
invariance, and locality we see that (A2) is equal to

(2, B(—Ymy *** "yl)Ac(—xm ree —z)Q')
= (2, B(~Ym, < —2)Q)
= (g, Ac(xly M xn)euTGBc(yly v ym)ﬂ)’

e _yl)uA"(_xm .

where 0 is a TCP operator (not necessarily unique).
From cyclicity of @ follows then that

u = 6u's. (A3)
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Consider now the product uv where both % and »
belong to @’. According to (A3) we have

w = G'u'e = a'oous = .
APPENDIX II

For the construction of X we proceed in the
following way®’: Since the domain of A & @ as
well as At is dense in 3¢ we may assume that A
is closed. We can write for every A € G on D

¥ H. Reeh and 8. Schlieder, “Uber den Zerfall der Feld-
operatoralgebra im Falle einer Vakuumentartung,” preprint
February 1962), Appendix, Sec. 2.

LOPUSZANSKI

AND H. REEH

A=HT+ AN+ 4) - I - AT — 4)
+ (I 4+ iANT — 4) — i — AU + 14)}

as a linear combination of four self-adjoint oper-
ators,” which on the other hand are uniquely de-
termined by A on D. The families of finite projections
of these self-adjoint operators build up an algebra
@. the uniform closure of which is X.

As was shown in Ref. 27 we have @, = @’. Since
& is the uniform closure of @, we have @, = X’ too,
so that @/’ = K.

8 Cf. e.g. N. I. Achieser and I. M. Glasmann, Ref. 22,
No. 46, Theorem 2.
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Some Exact Solutions of the Field Equations of General Relativity*
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A method for generating nonstatic solutions of the Einstein-Maxwell field equations in vacuo from
nonstatic solutions of the empty space—time field equations is given. It is shown that under certain
conditions one of the metrics under investigation admits algebraically degenerate vacuum solutions.
The necessary and sufficient condition in order that the vacuum solutions for this metrie be of type

null is obtained. Some exact solutions are listed.

1. INTRODUCTION

N the General Theory of Relativity a method
for constructing (i) a stationary external solu-
tion, and (ii) a stationary internal solution, has been
given by Ehlers." Subsequently Bonnor® has given
a method for constructing solutions of the Einstein—
Maxwell field equations in vacuo from static solu-
tions of the empty space-time field equations. The
method works because of the fact that the two sets of
field equations for the two metrics reduce to the same
set of partial differential equations if the metric
potentials in the two cases have functional relation-
ships and the electromagnetic field tensor satisfies
certain conditions. Thus knowing a set of solutions
of these equations one can write down solutions
for the two systems of field equations. Although
in a sense one is generating both types of solutions
at the same time one talks of generating one system
from known solutions of the other because of the
functional dependence of the metrics.

The object of the present investigation is to show
that nonstatic solutions of the KEinstein-Maxwell
field equations in vacuo can be constructed from
nonstatic solutions of the empty space-time field
equations. It is shown that under certain conditions
one of the metrics under investigation admits
vacuum solutions which are algebraically degen-
erate according to the Pirani~Petrov classification.?
Also the necessary and sufficient condition in order
that the vacuum solutions for this metric be of the
null type according to the Pirani—Petrov classifica-
tion is obtained. A solution satisfying these condi-
tions is obtained and it is found to be a solution

———

* Work supported by the Aerospace Research Labora-
tories of the ce of Aerospace Research, U. 8. Air Force.

1 J. Ehlers, Gravitation—An Iniroduction to Current Re-
search, edited by L. Witten (John Wiley & Sons, Inc., New
York, 1962), Chap. 2.

2 W. B. Bonnor, Z. Physik 161, 439 (1961).

3F. A, E. Pirani, Gravitation—An Introduction to Current
Research, edited by L. Witten (John Wiley & Sons, Inc.,
New York, 1962), Chap. 6.

representing plane gravitational waves. The cor-
responding solution representing plane electromag-
netic waves is also given.

2. PRELIMINARIES

We shall be concerned with the following two
metrics:

ds’ = gapda® d2’ = &'V d*s* — @7 (d2%)?,  (2.1)
ds" = Jap dz* d2’ = & d*s" — &7 (dz"), 2.2)
together with the auxiliary metric

d*s® = *g,; dz’ dz’, (2.3)

where W, P, and *g,, are functions of z* only.

Throughout the paper Greek indices take the
values 1, 2, 3, 4 and Latin indices take the values
1, 2, 4. The metric (2.3) is supposed to be that
of an indefinite V,. It is worth pointing out here
that the metrics (2.1) and (2.2) are related to the
corresponding metrics used by Bonnor by the com-
plex transformation z* — 7X*, and z* — iX® The
importance of this transformation is well known in
the study of axially symmetric fields.

The Ricci tensors corresponding to the metrics
(2.1), (2.2), and (2.3) will be denoted by R.s R.s
and *R,;, respectively. Also a semicolon denotes
covariant differentiation with respect to (2.3) and
a stroke denotes covariant differentiation with re-
spect to (2.2).

3. THE FIELD EQUATIONS

Consider an electromagnetic field tensor F .z We
propose to establish a correspondence between P
and W with some conditions on F,; so that the
field equations in the following two cases:

(i) §.p and F .4 satisfy the Einstein-Maxwell field
equations in vacuo:

R,,p = —87I'Eap,
Ei = —FaUFﬂ(’ + %githFwty

3.1)
3.2)
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(3.3)
(3.4

Fopry + Fayra + Fyap =0,
Faalﬂ = 07
and

(ii) ga.s satisfy the field equations for empty
space—-time:

R,=0, (3.5)

reduce to the same set of partial differential equa-
tions.

A simple calculation shows* that the Einstein—
Maxwell field equations (3.1), (3.2), (3.3), and (3.4)
for the metrie (2.2) reduce to

*R,; +2W,W,; =0, (3.6)
*0 Wi =0, 3.7

if P and W are related by
&’ = (1/a”) cosh® W, (3.8)

and F,, is given by
Fsi = [a/(4m)!] sech® W-W
Flz = F14 = F24 = 0,

3.9)
(3.10)

@ being a certain positive constant.

It can be shown that (3.7) follows from the
contracted Bianchi identities for *R;;. Hence the
problem of solving the Einstein—Maxwell field equa-
tions in vacuo under the conditions stated above
reduces to that of solving Eqs. (3.6).

Equations (3.6) are precisely the conditions that

Rap = 0.

We are thus led to the result: 7.5 F.s (or equiv-
alently P, *g;;, F.g) form a solution of Egs. (3.1),
(3.2), (3.3), and (3.4) if P and F,s are given by
(3.8), (3.9), and (3.10) and Eqs. (3.6) are satisfied.

Since the system of Egs. (3.6) is equivalent to
(38.5) and thus the solutions of (3.6) determine the
empty space~time metric (2.1) completely, we are
generating solutions of the Einstein—-Maxwell field
equations in vacuo under certain conditions for the
metric (2.2) from the corresponding solutions of the
empty space—time field equations for the metric (2.1).

The geometrical significance of Eqgs. (3.6) is that
*R.; has one simple eigenvector W* with the eigen-
value 2 W, ,W! and an eigen 2-space W = const
with eigenvalue 0.

¢ M. Misra, Proc. Nat. Inst. Sci. India 29A, 104 (1962).
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4. SOME GENERAL CONSIDERATIONS

In this section we study some properties of the
curvature tensor for the vacuum solutions corre-
sponding to the metric (2.1).

The three-dimensional curvature tensor for the
metric (2.3) is given by®

*Ririn = *Gin*Bri — *Gua*Riz + *gu*Rin — *gil*Rkn

— 3(*gin*gu — *g1a*g0)*R, (.0
which in view of (3.6) can be written as
*Roun = Rlipntts + Rlutotte — R,  (4.2)
where
*R = *g**R,., 4.3
pe = (—2)W,,, (4.4
and
Win = *Ge*gu = *Qragar. (4.5)

It follows from (4.2) in view of the symmetry
properties of R’;;;, that

*Riklnl-‘" = (%*R)R:Hu#”' (4-6)
Now if *R;; has vanishing trace we have
*R = +I-"|‘IJ" = 07 (4°7)

so that u; is a null vector and we consequently have
*R.‘kznﬂn = 0. (4.8)

Now the nonvanishing components of the cur-
vature tensor for the metric (2.1) are given by

Rup = € [*Rusp + *gu(W.is — W W)
+ *g:i (Wi — WaWo)
— *0i(Wiin — W W)
= *ga(Waai — WaW.))
+ Cgu*gii — *@i* gl W.a W7, (4.9)
and
Ruagy = &V [Woas — 3WaW.; + *0u, W W3],

where *R,;;; is given by (4.1).
It follows from (4.9) and (4.10) in view of (4.4),
(4.7), and (4.8) that

Rhn‘kW:‘W:k =0,

(4.10)

(4.11)
and

RhaaiW;i = 0. (4.12)

8 P. G. Bergmann, Introduction to the Theory of Relativily
(Prentice Hall, 1942), p. 173.
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Hence we obviously have
I/V:IeRazlﬂ'rvaV;ﬂI/V:‘s = (4.13)

It follows therefore that all vacuum solutions of
(2.1) are algebraically degenerate according to the
Pirani—Petrov classification (see, for instance, Pirani’®
where detailed references will be found) W ; being
a multiple Debever—Penrose vector. It also follows
from the Goldberg-Sachs® Theorem that the null
vector field W, is not only geodesic but shear-free.

It is easy to see that the curvature tensor for
(2.1) satisfies

Rupy W, =0 (4.14)

if and only if
W;,'W;M' - W;;.W;,',‘ = 0. (4.15)

Thus the necessary and sufficient condition that the
vacuum solutions of (2.1) be of type null according
to the Pirani-Petrov classification® is given by (4.15).
It may be noted here that the Egs. (4.7) which can
also be written as

WWwW:=0 (4.16)

and (4.15) are independent. Thus it should be
possible to find solutions of (3.6) which satisfy (4.16)
but not (4.15). Such solutions will not represent
plane gravitational waves. A class of solutions which
do satisfy (4.15) and (4.16) is given in Sec. 5.

The conditions (4.15) can also be put in the
following equivalent forms:

(W;h/W;i);f = O) (4.17)

and
*Ru*Rix;; — *Bu*Buy; = 0, (4.18)

which is possible because the vector W, is supposed
to be nonzero. Otherwise if W,; were a zero vector
then the Ricci tensor for (2.3) would vanish and
consequently (2.3) would be a flat metrie, which is
of no interest here.

The immediate interpretation of (4.17) is that
the quantities (W,,/W,;) are covariant constant.
These hold identically if » = %, which is to be
expected since (4.15) is antisymmetric in & and <.
We are thus left with the case when h 5% 7. We have
in general three of these quantities of which only
two are independent and satisfy six equations. These
equations involve *g;; and W and therefore are
rather complicated. The conditions (4.18) although
quadratic in the Ricei tensor for (2.3) and therefore
highly nonlinear have only one advantage over the
conditions (4.17). These involve only the *g.;.

8 J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. Suppl.
22, 13 (1962).
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5. SOLUTIONS

(i) Some exact solutions of (3.6) were obtained
by the author* by assuming the metric (2.3) to be
conformally flat so that

(5.1)

where ¢ is a function of z* and 75.; has its usual
significance diag (—1, —1, +1) and zero elsewhere.

Assuming further that ¢ and W are functions of u
where

* — S2C
gi; = € MNij,

u = a2, (5.2)
a; being constants which satisfy
n*oe; = 0, (5.3)
the solution obtained is
o= ~loge, (5.4)

2
W=f|:21 311,:] du + const,

¢ being an arbitrary function of u.

This solution satisfies all the conditions for plane
gravitational waves as obtained by various workers.
Also the corresponding solution of the Einstein—
Maxwell field equations in vacuo is given by

2
&F = 2cosh"’W W = f[ld ]du+const

Fs‘ = (47[')_ aSeCh2 W'W:;, F12 = F14 = Fz‘ = 0,

—2 . .
*g;; = ¢ N, U= aix', ﬂ"a;a,- = (.

(5.5)
This gives a class of solutions representing plane
electromagnetic waves in vacuo.
(ii) If instead of assuming (2.3) to be conformally
flat, we simply assume that it is conformal to another
metric

*gi = €Jui, (5.6)

and denote by an overhead ~ all quantities defined
with respect to §,;, then (3.6) gives

Rgf + 0,if — O
+ giigkm(o'.km + O',ko'.m) = —ZW:iW:i) (5-7)

where a comma denotes covariant derivative with
respect to §;;.
The substitution

40,4

W=g¢ (5.8)

leads to
R.',' + o, i + T.0;

+ ﬁ.-,'ﬁ'""(a.k... + U.ko'.m) = 0; (5-9)
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which on contraction gives

B+ 45+ 0w0) =0,  (5.10)
From (5.9) and (5.10) it follows that
Riy4o.+ow; —E/MDG; =0, (511)
which can be written as
U, + [Bi — (B/9H3JU =0, (512
where
o= logU. (5.13)

Equations (5.12) are a system of six partial
differential equations for determining §,; and U in
all four functions. Since the three contracted Bianchi
identities for B,; reduce to only one independent
equation, Eq. (3.7), we have five equations in four
unknowns.

The important point to be noted here is that
Eqgs. (5.12) are linear in U—a situation which exists
only in the axially symmetric case.

The simplest solution of (5.12) is

gl’i = i, ) (5.14)

U = ﬂ;x‘,

with 8, arbitrary constants.

While it appears that *g,; and W for this solution
are functions of three variables, that is not the case.
By a suitable rotation of the axes it can be shown
that *g;; and W are functions of only one variable.

If we try to solve (5.12) by putting

R-’i - (R/4)§,~,~ =0, (6.15)

we find that

Rhiik =0, (5.16)

and consequently we are led back to the solution
(5.14) already given.

(i) If we try to solve Eq. (3.6) by assuming
that *R;; is recurrent, i.e.,

M. MISRA

*Riju = 0*Ry; (5.17)

where 6, is an arbitrary gradient vector, we have

W.aW,; + W, W.,. =6W. W, (5.18)
which leads to
W.w= W,V (5.19)
where
Vi = —3llog (W W)l + 6. (5.20)

and we have assumed that W, is a nonnull vector.
It follows that W, is itself a recurrent vector.

Thus the necessary and sufficient condition in
order that *E,; be recurrent is that W,; be a re-
current vector.

Now since
6, = *R,, (5.21)
and therefore
Va=1[R — %log (W, . W), (5.22)
it follows that
Wi — Win =W Vo + W, V.
— WV~ WV =0, (5.23)
in view of (5.19). Hence
*Rasin = 0. (5.24)
Consequently from (3.6) it follows that
W.=0 (5.25)

so that W is a constant. This solution is obviously
trivial. This result is true whatever the dimensions
of space so long as the Ricel tensor satisfies (3.6).
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The Lehmann—Symanzik-Zimmermann (LSZ) formalism is used as a caleulational method to
obtain an equation for the determination of the ¥V + N potential energy in a slightly modified Lee
model. This approach to the problem is compared with the standard eigenvalue technique and the
dispersion theory treatment. It is found that an exact solution to the VN — 2N ¢ sector can be ob-
tained with one algebraic equation and this evidence gives additional support to the desirability of
the LSZ method as a calculational tool for the model.

1. INTRODUCTION

T has recently been shown by Maxon and Curtis

that the Lehmann-Symanzik-Zimmermann®
(henceforth called LSZ) formalism can be used to
calculate the quantities of interest in the first non-
trivial sector of the Lee model.® As is well known,
these are the elastic N + ¢ scattering amplitude,
the V-particle self-energy and the wavefunction re-
normalization constant. The solution of the V — N@
sector is also obtainable with simple, straightforward
eigenvalue equations® and with the methods of dis-
persion theory.**® Using the latter technique, Amado®
has extended the exactly solved part of the model
to include both the V + 8 — V -+ 6 elastic scattering
and the production process V 4 6 — N - 26.

In addition to these transition amplitudes and
renormalization constants, it has also been shown
that dispersion methods’ can be used to calculate
two simultaneous algebraic equations for the vertex
functions® I' = (V| fy |B) and I" = (N| f» |B),
which yield an equation for the determination of
the ¥V -4 N potential energy in agreement with
that derived by direct methods.’ In this paper, as
in Ref. 1, we are interested in demonstrating the
usefulness of the LSZ formalism as a calculational
technique. For this purpose, we investigate the

1 M. 8. Maxon and R. B. Curtis, Phys. Rev. 137, B996

(1965).

2 I% Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955).

3 T. D. Lee, Phys. Rev. 95, 1329 (1954). G. Killén and
W. Pauli, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.
30, No. 7 (1955).

4 L. M. Goldberger and 8. B. Treiman, Phys. Rev, 113,
1163 (1959).

5 P, DeCelles and G. Feldman, Nucl. Phys. 14, 517 (1959).

¢ R. D. Amado, Phys. Rev. 122, 696 (1961). The complete
eigenvalue solution of the V 4 6 sector has recently been
reported in the literature: A, Pagnamenta, J. Math. Phys. 6,
955 (1965).

7 L. M. Scarfone, Nucl. Phys. 39, 658 (1962).

8By, |V), and |N) are the physical V 4 N, V, and N
states, respectively, and fy(fy) are the V(XN) current oper-
ators at time zero.

8. Weinberg, Phys. Rev. 102, 285 (1955).

VN — 2N sector of a slightly modified Lee model
and show that the LSZ approach solves the V 4+ N
problem and the 2N - 6§ scattering with one
algebraic equation. We see that the binding energy
equation is obtained by studying the analytic struc-
ture of the V + N propagator and the scattering
amplitude then follows.

It will be recalled that the model field theory
under consideration here describes the coupling of
two heavy fermions V and N with a relativistic
boson 6, such that the only virtual elementary
process allowed by the selection rulesis Ve N + 4.
In order to simplify the procedure in our investiga-
tion, we conveniently set the V - N separation
parameter equal to zero and require that all field
operatiors satisfy commutation relations. It is readily
verified that the latter modification does not alter
the classical results for the mass and wavefunction
renormalizations. In Sec. II we briefly comment
on the formal structure of the model and summarize
the V 4+ N problem from the point of view of
dispersion theory and standard techniques. Sec-
tion ITI will then present the LSZ approach by in-
troducing the appropriate = functions'® and their
Matthew—Salam equations."

II. VN — 2N6§ SECTOR

The basic coupling V =2 N -+ 8 clearly indicates
that the bare and physical V-particles do not
coincide and that the self-energy effects are due
to N + 6 “bubbles.” Therefore, the renormalized
Hamiltonian is

H = moZ'P:NPv + m!l/;v%r

+ Toaas + gvind + gA by, ()

10 The 7 functions are vacuum expectation values of time-
ordered products of Heisenberg operators.

u P, T, Matthews and A. Salam, Proc. Roy. Soe. (London)
A221, 128 (1953).
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where

@)

The cutoff function f(w) assures the convergence
of all integrals and the renormalized coupling con-
stant g is less than its critical value. ¢, is the
renormalized V-particle operator and Z is a re-
normalization constant. We are quantizing in a box
of unit volume and for convenience the heavy
particles have equal mass m. The nonvanishing
commutators are

(@, ab] = 8, [¥w, ¥4 = 1, [¥y, ¥4 = Z7%. (3)

The Lee model literature now contains three in-
dependent derivations''*'® of the mass and wave-
function renormalization constants and these are
known to be

m = 37 252 @
z=1-L£ 3l ®

where it is required that (0| y» |V) = 1. From the
selection rules we know that |B) is a superposition
of two states. One of these is the bare V + N state
and the other is the bare 2N + 6, multiplied by a
momentum space wavefunction ¢(k) and summed
over k. Calling the eigenvalue of the state |B) W5 =
2m + wp where wp < u, and using (1)—(3), we obtain

f(w)w(k)
wp = om + g( ) Z (2‘»)'} (6)
(@ — wn)ek) = —g(2/2)* {(w)/(2w)}. @)
Eliminating ¢(k) from (6) and (7) and using (4)
and (5), we get the following equation for the de-
termination of the eigenvalue wp as a function of
the renormalized coupling constant:

Flwz) = 1 + Bws) + Mws) = 0, ®
where in general
50 = 7(8) Dot @
MCY)

2
=4 . J) .
Aw) 20 kz; W@ — w — € (10)
Since the fermion source has no recoil, we can
interpret wp as the V 4 N potential energy at
zero separation. Equation (8) has been solved in
Ref. 9 for the case of nonrelativistic §-particles with

no cutoff and the conclusion is that wy is real and

LEONARD M. SCARFONE

single valued providing g is less than its critical value.
In Ref. 7, the vertex functions T and I’ are

chosen as a starting point for a dispersion theory

derivation of (8). Contracting the V-particle in the

former and the N-particle in the latter, we are led

to consider'?

i [ 0l U0, 10 1B dt,

T (11)

I\l

: j: e™ 0| [fn(t), f¥16() |B) dt.  (12)

The introduction of a complete set of intermediate
states into each of these expressions reveals that
both T and I' are related to the vertex functions

K(w) = [2)"/f())0] fr IN6L), (13a)
R() = [@u)/f@)IN 6 fv [B).  (14a)

A dispersion theory treatment of these quantities
next introduces the N -+ 6 scattering amplitude
as is clearly shown in Figs. 1 and 2. In this_way,

Fia. 2. Dispersion graph for the vertex (0|f vIN 6).

we are forced to solve singular integral equations
of the Low or Ommes types for each of these func-
tions, and the results for K and R are*"’

K@) = —gll + B)]™,

Rlw) = —Z[(T/wZ) + (I"/ws)]K*(w),  (14b)
where we have taken |N6,) to mean “in” states.
With these considerations, (11) and (12) can
ultimately be written as
wsl' = wsT(l — Z7") — omIY, (15)
wpl” = wp(T' + ZT){[1 4 Blwp)]™' — Z7'} — omIY,

(16)

respectively. When we eliminate I' and IV from
these equations, we are led to (6). The possibility
of an exact solution in this case, as in other similar
examples,*”® is traced to the fact that we are dealing

12.9(¢) =0fort <O0; 6(¢) =1fort > 0.

(13b)
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with a finite set of coupled integral equations brought
about by the selection rules.

III. LSZ APPROACH

In this section we study the properties of the
four 7 functions associated with the graphs shown
in Fig. 3. The V 4 N propagator, the VYN — 2N¢

N4

A N

T r2(73) T4

Fia. 3. Graphs corresponding to the r functions in the
VN — 2N 9 sector.

vertex and the Green’s funetion for 2N - 6 scatter-
ing are described by 7, 7.(7s), and 7, respectively,
where these quantities are defined by the time-
ordered products.

71(8) = O] T[S ¥n(E)¥a0)¥7(0)] [0), (17a)
7285 0) = [@w)!/f(w)]
X O] TT¥n(s)¥x(Dauls) vyl [0),
17b)
75(8; ) = [2)*/f) O] TI¥v(s)¥n(s)¥nvnas] [0),
(17¢)
7483 0, ') = [(4ow)}/{()f()]
X (0] TI¥w(s)¥n(S)ass)ar-¥rin] 10),

@17d)

where s = ¢’ — . The field equations
Z( d/dt — mo)¥yr(t) = g¥n()AQD), (18a)
G d/dt — myga(t) = gA'O¥(0), (18b)

G d/dt — wa(t) = g2u) HW)PrB)¥r(t), (18¢)

together with the equal time commutators (3) give
the Matthew—Salam equations

Z( d/ds — me — m)my(s)

=is)+ 0 D ne), a9

(Zd/ds — 2m — w)r(s;w) = 2¢7,(9), (19b)

(T d/ds — 2m — w)rs(s; w) = 2¢7,(s), (19¢)
(i dfds — 2m — w)r,(s; w, ')

= 4iwd(s) -/ () + 2¢7s(s;0).  (19d)
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An equivalent equation for 7, is
(Zd/ds — 2m — o' )1,(s; @, &)
= 4408(8) 6 /17 (w) + 2g72(s; w). (19e)

Sinee r,(0; @) = 73{o; ) and 7,(0; @, @’ = 7,{0; 0", w),
it is clear from the above equations that 7.(s; w) =
73(s; w) and that 7.(s; w, ') is symmetric under
the interchange of w and «'. This symmetry cor-
responds to an interchange of the two 6-particles
in Fig. 3.

Introducing the Fourier representations

1a(8; w, @) = Qz;r./: AW e "2, (W;w, '), (20a)

Wi, 0) =5 [ dse™rlsio o), (200)
we immediately obtain
R 1 (@) .
W~ mo = ma D) = %+ 4 L a7,
(21a)
(W —2m — ), (W; 0) = 2¢g7,(W),  (21b)
(W — 2m — o)?W; w, o)
= 4wy /(W) + 29%(W; o). (21c)

It is obvious from the structure of these equations
that the sector is solved since #,(W, w) can be ex-
pressed in terms of #,(W) by (21b) and the latter
quantity can subsequently be removed from the
sum in (21a) and combined with the left-hand
side. In fact, we have

. AW
B0 = 20 lim g e 22)
fW) = W — 2m)" F W — 2m).  (23)

In order to obtain (8), it is necessary to consider
the analytic properties of the V' - N propagator,
#(W). To this end, we put r.(s) into (20b) and
insert a complete set of intermediate states which
in this sector are the physical state |B) and the
2N -+ @ scattering states. A simple calculation gives

. _|Zsl’/Z O] ¢viw 2N 6]
H(F) _W--W3+ie+;W—2m—w+'ie’

24

where Z; is the normalization constant for the state
|B). Requiring that the denominator in (23) vanish
at the simple pole W = W, we thus arrive at the
desired result. To determine |Z;|*> we evaluate the
residue of #,(W) at the pole and obtain
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5" = [ 1+ L R 2_&“’)‘03)]

The LSZ approach solves the V' -+ N problem with
one algebraic equation and this is considerably
simpler than the dispersion analysis. At this point
we collect the # functions

L) = (W — 2m)" F' (W — 2m),

B3 0) = #W; )
= 2g(W — 2m)'F (W — 2m)(W ~ 2m — )"},
(25b)

(25a)

(W0, o) = [4w6k,,,/f2(w)](W — 2m — @)~
+ 4°(W — 2m)"'F' (W — 2m)
X (W —2m — w)7'(W — 2m — o). (25¢)

To obtain the 2N + ¢ scattering amplitude, we
introduce the S-matrix element

= (2N6{7 | 2N 6", (26)

where the “plus” and “minus” refer to the “in”
and “out” states, respectively. We proceed directly
to the completely contracted form of S and write
it as

S=6w—j§%)ji—w,;%f_mdt'

Xf dteawm-ﬂo’)t D(t’)‘l}(i’ t) D*(t) —s(2m+<¢}t
(27)

where
Dty = (i d/dt — 2m — w).

Replacing r,(¢, £} = r,(s) by its Fourier representa-
tion (202) and carrying out the differentiations and
integrations in (27), we get, with (25c),

8 = b — 4rig*8(0 — o)[f)f(w')/ oY NP ()]
(28)

It is clear that the scattering amplitude has a pole
at the unphysical value of the energy «w = wz. In
the language of dispersion theory this is, of course,
a bound-state pole and it enters because the discrete
state |B) has the same quantum numbers as the
2N - 9 scattering state. It is also possible to obtain
(28) with the methods of dispersion theory and
eigenvalue equations.

LEONARD M. SCARFONE

IV. CONCLUDING REMARKS

We have seen that the LSZ formalism can be
used to obtain an equation for the determination
of the ¥V <+ N potential energy and, in fact, solve
the entire VN — 2N@ sector of a slightly modified
Lee model. With this approach it would not be
very difficult to extend these considerations to the
V 4+ aN (n > 1) potential which has been solved
by the eigenvalue technique,'® but, on the other
hand, is rather unyielding to the methods of disper-
sion theory.

We can also think of using the LSZ approach
for the two V problem which has not been exactly
solved with an eigenvalue equation' and seems
hopelessly complicated from the dispersion-theory
point of view. A zero separation of the two V-par-
ticles would be invoked as in the V + N case, and the
appropriate r-functions would be those associated
with the graphs shown in Fig. 4, namely, the

Fia. 4. Graphs corr%ﬁondmg to the r functions that weuld be
required in the VV — VN @ — 2N28 sector.

V + V propagator, the VV — VN@ vertex, the
VV — 2N26 vertex, the Green’s function for elastic
V + N8 — V -+ N@ scattering, the production
process V + N + 8 — 2N + 26 and the Green’s
function for 2N -+ 20 scattering. The LSZ method
should be especially helpful here since the symmetry
properties of the r functions would be immediately
obvious from the Matthew—Salam equations as is
the case with the V — N@ and VN — 2N sectors.
The two-V problem is presently under investigation.

1 1,. M. Scarfone, Nuovo Cimento 24, 480 (1962).
( 9“91){ Ascoli and E. Minardi, Nuovo Cimento 14, 1254
195
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The effects on a certain family of representations of the commutation relations of the operator-
translations ax — ax + ci, ai* — ax* + ci*, are investigated. Here a: and a:* are the annihilation
and creation operators of the representations, the c; are complex numbers (scalar operators), and
the representations considered are the discrete representations described by Gérding and Wightman,
and Schweber and Wightman, generalizations of the usual Fock representation. Necessary and suffi-
cient conditions on the translations are obtained for the resultant representations to remain in the
family of discrete representations, and the resultant translation groups are investigated for their

relevant structure.

FUNDAMENTAL problem in the gquantum
theory of fields is that of understanding the
representations of the canonical commutation rela-
tions and the physical situations which they des-
cribe. This has been done in various ways by
Gérding and Wightman,' by Segal,® and others.
An important matter in connection with the role
various representations of the canonical commuta-
tion relations may play in the quantum theory of
fields may be lumped under the general name of the
implementation of the pseudo-canonical transforma-
tions by canonical transformations. (The term
‘pseudo-canonical’”” here being borrowed from Segal’s
paper cited above.) To explain this let us give an
example investigated by Haag.® Suppose that in
some physical calculation the transformation scheme
for the creation and annihilation operators

= @, cosh @ — af sinh 6,
—a, sinh 8 -+ af cosh 6,
k=1,2,3,---,

[17% —)bg

i

a¥ — b¥

6 real, forces itself upon us. The operators b, and b%
defined by the right-hand side of these equations
satisfy the same commutation relations as do the
operators g, and a¥, namely,

[bln bl] = 0, [b*;n b*;] =0, [bk; b’ﬂ = O,

E1=1,2,3, .

The question now arises whether a unitary operator

* The present paper is included in a thesis submitted to
Princeton University in partial fulfillment of the requirements
for the degree of Doctor of Philosophy. Statements made
here without proof are proved in the thesis.

The results obtained in this paper were partly obtained
while the author was a National Science Foundation Fellow
at Princeton University.

1L, Gérding and A. S. Wightman, Proc. Natl. Acad. Sci.
U. 8. 40 ( 19542.

t 1. E. Segal, Trans. Am. Math. Soc. 88 (1958).

t R. Haag, Kgl. Danske Videngkab. Selskab Mat.-Fys.
Medd. 29, 12 (1955).

U exists such that b, = Ua,U™", b% = UaxtU ™", that
is, whether this pseudo-canonical transformation
(meaning that it preserves the commutation rela-
tions) is actually a canonical transformation on the
operators. Otherwise said, we must know if we re-
main with the same representation of the commuta-
tion relations. In the above example it turns out that
for the usual Fock no-particle representation of
the annihilation and creation operators, a. and a¥,
the derived representation has a no-particle state
if and only if 8 = 0. Such a consideration would
rule out the use of the Fock representation in the
theory. These pseudo-canonical transformations,
when they appear, are usually intimately involved
with the covariance of the physical laws in which
they occur. As a very familiar example of this we
have the relation satisfied by the Pauli matrices

3
UR)"U'R) = >, (R)", m=1,2,3,

n=1

where B — U(R) is the two-dimensional unitary
ray representation, D! of the proper three-dimen-
sional rotations. This relation is commonly used to
prove that the Pauli equation for the spinning non-
relativistic electron is covariant under rotations.
From our point of view the identity states that
the pseudo-canonical transformations on the solu-
tions b™ = ¢™ of the commutation relations

(b,, b] = 21b,,

represented by the right-hand side of the identity
may be implemented by the unitary equivalence ap-
pearing on the left-hand side.

Here we shall consider those pseudo-canonical
transformations which may be written formally,

k=1,2,3 -,

for a particular class of representations of the canoni-
cal commutation relations

r,s,t =123 in cyclic order,

ay— @ + ¢, af —af + cf,
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[ar: a,] = 0; [af) aﬂ =0, [a'n af] = §,,.

Here the ¢, are merely some sequence of complex
numbers (scalar operators). The representations of
the commutation relations which we consider will
be what Schweber and Wightman* term the discrete
representations of the commutation relations. For
the precise definition of these representations, the
simplest generalization of the usual Fock space
representation of the annihilation and creation
operators, and the conditions under which they
arise, we refer to Refs. 1 and 4.

We use the following notation: E will be the set
of all sequences (n,, n,, - - +) of nonnegative integers;
the elements of E will be the labels for the states of
our system, indicating the occupation numbers for
the single-particle states of our boson field in the
usual interpretation. Using the construction in Ref. 2,
we denote by [m] the set of all sequences ¢t & E whose
entries differ from those of m in at most a finite
number of places, by H[m] the corresponding Hilbert
space of all complex sequences {c, : ¢ € [m]} in-
dexed by the elements of [m] such that

Z Ict|2 < o,
tE({m]
and by R[m] the corresponding descrete representa-
tion of the commutation relation. Thus if 0 =
0, 0, 0, ---), then H[0] and R[0] are the Hilbert
space and the usual Fock representation of the
commutation relations. If f,, { € [m] is the ortho-
normal basis for H[m] corresponding to the sequence
¢, = 0forp # t, ¢, = 1, then R[m)] is described by
the equations
akft = t?cfl—ﬁk}
atf, = (& + 1)%f:+s”
where t, is the kth entry for the sequence ¢ and
t & 8, is t with its kth entry increased (decreased)
by unity. To complete the definition of R[m], we

define the domain of a; to be those elements & H{m)
for which

k=1,2,3 ",

‘e%] A+ D¢, D < .

It may then be shown that the operator a} defined
above actually is the adjoint of a;, that a, = (a*)*
and so that both are closed operators.

We should note that [m] is a denumerable set,
so that H[m] has the denumerably infinite dimension
cardinality and is, therefore, isomorphic to I°.

In order to obtain a mathematically precise for-
mulation of the problem in which complications

( 4 Sj 8. Schweber and A. S. Wightman, Phys. Rev. 98, 812
1955).
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associated with the domains of the unrounded
operators are avoided, we accept the commutation
relations in the form proposed by Weyl, a form from
which von Neumann® first proved uniqueness in the
case of a system having a finite number of degrees
of freedom. In terms of the unitary operators,

U@ = e (i 3 auas),

k=1

V@ = e (i 330, (@ by rea),
k=1

where p, = 27} (a; + a%) and ig, = 27*(a, — a%), the
Weyl relations for a system with n degrees of freedom
are

U@U(b) = Ula + b), V@ V() = Via+ b),
U@V(®) = exp [—i(a - DIV(D)U(a),

(@-b) = };a,‘b,,. (1)

In Ref. 1 Garding and Wightman replaced these
relations (which, by von Neumann’s theorem, have
as their unique continuous solutions direct sums of
copies of the usual Schrodinger representation of
the p and ¢ operators) by their simplest generaliza-
tions to systems with an infinite number of degrees
of freedom. Here, for these larger systems, it has
long been known that the uniqueness fails. Garding
and Wightman permitted the real sequences a; and
b; to formally be infinite sequences, but with the
restriction that a; = b; = 0 for almost all <. The
solution of this generalization of the Weyl relations
is then not unique, and we get the class of representa-
tions of the commutation relations, both discrete
and continuous, described in Ref. 1. In particular
the discrete representations mentioned above satisfy
these generalizations of the Weyl relations.

To get a precise form of the translations it is
convenient to condense these relations even further
into the form given them by Segal and von Neumann.
Set

W) = W(a + b)
= exp [3i(a - b)] exp [i(b - @)] exp [i(a - P)];
then the Weyl relations are equivalent to
WEOW) = exp [§ Im @ - )IW(e + d).
It is easy to see that the new set W defined by

W(d) = exp [Z (—diee + J,,ck)]W(d),
k=1
again satisfying (1), is irreducible if the set of W is
irreducible and has as infinitesimal operators
dk = O + Cy.
§J. von Neumann, Math. Ann, 104, 570 (1931).
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Thus, the problem is to find when the pseudo-
canonical transformation W — W is canonical.

For this purpose it is useful to extend the relations
(1) as follows: Let ¢ be an infinite sequence of com-
plex numbers, and, considering the representation
R[m], let n & [m] be a representative sequence of the
class [m]. Suppose that

>+ Dl < =, @

and let W”(c) be the sequence of operators W(c"),
where c" is the sequence ¢ terminated after N terms,
that is,

1<Ek<N,
E>N.

(CN)k = G,y
(CN = 0’

Then the sequence W7¥(c) converges strongly to a
unitary operator, which will be denoted W(c). If ¢
and d are two sequences satisfying the condition (2),
then the relation (1) is again satisfied. This last
generalization of Weyl relations is at once pertinent
to our problem, for

WEW@W(—c) = W(d).

Thus, we have implemented the operator translation
@, — @, -+ ¢, the sequence ¢, satisfying the condition
(2), as a unitary equivalence on the operators. The
condition (2) will in fact be a natural requirement on
the translations acting on the discrete representation
RIn] for the representation to be preserved.

To study the question of the effect of the general
translation on the representation E[m], we may use
the following method, due to Wightman. We ask if
the translation a; — a, - ¢, can possibly send R[m]
into R[I]. To answer this we consider the possibility
of the existence of a vector & € H[m], the space on
which the operators of the representation R{m] act,
such that

(af + Ao + c)® = L,

A formal solution of these equations can be obtained,
that is, a sequence ¥,, t € [m] of complex numbers
which enter as the components of & relative to the
basis f, of H[m]. On requiring that &, actually form
on element of the Hilbert space, that is, that

E Iq)‘lz < @,

t€im]

k=1,2,3,---.

the possibilities of the existence of the element &
are greatly reduced. Using this method the effects of
the translation on the discrete representations may
easily be described. The results are the following:

165

(a) The translationa, — a, + ¢, k=1,2,3, .-+,
transforms the representation R[m] into itself, and
is equivalent to a unitary similarity on the repre-
sentation space, if and only if the condition (2) is
satisfied. This, condition incidentally, is easily seen
to be unchanged if the sequence n € [m] in (2) is
replaced by any other n’ & [m].

(b) In all other cases the resultant representation
is not a discrete representation, but one of the con-
tinuous representations distinguished by Wightman
and Garding. Thus, no discrete representation is
transformed into any other by these transformations
on the operators.

The condition (2) which characterizes the family
T[m] of translations leaving R[m] invariant is con-
sistent with the natural algebraic operations: if
a = (@, @, -++)and b = (by, by, - - -) are contained
in T[m] thenso area + b = (a, + by, @ + by, -+ )
and —a = (—a,, —@, ---), and since 0 = (0,0, - - -),
the unit under this composition, is contained in
T[m], T[m] forms an Abelian group, a subgroup of the
additive group of all vectors in the Hilbert space I°.
With the usual Hilbert space topology the transla-
tion groups of the various discrete representations
are dense subgroups of the enveloping group I”.
That this is so may be seen from the fact that each
of the translation groups contains the elements
¢ = (¢, €5, ---) such that ¢, = 0 for all except
possibly a finite number of values of ¢, and these,
of course, form a dense set in the space I*. It is not
difficult to show, in fact, that this particular dense
set is precisely the intersection of all of our transla-
tion groups in I*.

From the point of view of the present problem the
topological structure mentioned above, that of r
induced on the various translation groups, turns out
not to be the natural one. Before we introduce other
topological structure, however, it is useful to discuss
more closely the correspondence between the different
representations and the various translation groups.
This correspondence is certainly not one-to-one.
Thus if m, is any bounded sequence of integers then
the condition (2) on the complex sequence ¢, means
no more and no less than the condition (2) with
n, = 0 for all k. Therefore, all the bounded repre-
sentations R[m), that is, those representations for
which some (and hence every) sequence (m,, m,, « - )
€ [m] is bounded, have the same translation group,
namely all of I%.

The situation is very easily described precisely.
In the set E of all sequences of non-negative integers,
we introduce the relation we call asymptotic equiv-
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alence defined as follows: r, ~ s, if there are num-
bers A and B such that

0<A4L(n+D/(+1)<B< o, 3)

for all k. This is easily seen to be an equivalence
relation on E, dividing E into disjoint sets of asymp-
totically equivalent sequences; it is also coarser
than the relation used in forming the classes [:]
upon which the construction of the representations
R[m] is based, so that if ||m|| is the sequence class
containing m then [m] C |lm||, and ||/m|| may be
written as the union of the classes [f] contained in it.

The precise connection between the representa-
tions and the translation groups is then given by the
following statement: Two representations, E[m] and
R[n], have the same translation group, if and only if,
[m] and [n] are contained in the same asymptotic
equivalence class that is, if ||m|| = ||n||. We denote
by T||m|| the translation group corresponding to
the family of representations {R[l] : t € E, t € ||m]|}.
Thus T||0]| is the translation group for the no-
particle representation and also for all the bounded
discrete representations. In constructing the relevant
topology on these groups we will deal with T|jm||,
the single translation group corresponding to a
complete family of representations, rather than with
a group T[m] corresponding to a single representa-
tion. Indeed there is nothing else that we can do, for
the force of the above assertion is that, beginning
with a translation group T[m] we can only identify
representations R[m'] with ||m’|| = ||m|| if we ask
for the representation which gave rise to it.

We now construct a topology for the group 7' ||m/|]|.
To do this we select some sequence r & ||m|| of
integers and define the function

pe) = [E (ra + 1) WT

on the group elements; by the definition of T||ml]
and what we have already said, it follows that this
is well defined and finite for any ¢ € T'||m||. More-
over, it is easily proved in the usual way that
g(c, d) = p(c — d) is a metric on T||m||, and that,
using the topology of this metric, T'||m|| becomes a
topological group and a complete metric space. By
turning T'||m|| into a Hilbert space in the natural
way and then using the theorem that a Hilbert
space is uniquely determined by its dimension
cardinality, or by explicitly exhibiting the mapping
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F of T||m|| onto I* which establishes the resul